##// END OF EJS Templates
localrepo: use changelog.hasnode instead of self.__contains__...
localrepo: use changelog.hasnode instead of self.__contains__ Before this patch, releasing the store lock implies the actions below, when the transaction is aborted: 1. "commithook()" scheduled in "localrepository.commit()" is invoked 2. "changectx.__init__()" is invoked via "self.__contains__()" 3. specified ID is examined against "repo.dirstate.p1()" 4. validation function is invoked in "dirstate.p1()" In subsequent patches, "dirstate.invalidate()" invocations for discarding changes are replaced with "dirstateguard", but discarding changes by "dirstateguard" is executed after releasing the store lock: resources are acquired in "wlock => dirstateguard => store lock" order, and are released in reverse order. This may cause that "dirstate.p1()" still refers to the changeset to be rolled-back at (4) above: pushing multiple patches by "hg qpush" is a typical case. When releasing the store lock, such changesets are: - not contained in "repo.changelog", if it is reloaded from ".hg/00changelog.i", as that file was already truncated by "transaction.abort()" - still contained in it, otherwise (this "dirty read" problem is discussed in "Transaction Plan" http://mercurial.selenic.com/wiki/TransactionPlan) Validation function shows "unknown working parent" warning in the former case, but reloading "repo.changelog" depends on the timestamp of ".hg/00changelog.i". This causes occasional test failures. In the case of scheduled "commithook()", it just wants to examine whether "node ID" of committed changeset is still valid or not. Other examinations implied in "changectx.__init__()" are meaningless. To avoid showing the "unknown working parent" warning irregularly, this patch uses "changelog.hasnode()" instead of "node in self" to examine existence of committed changeset.

File last commit:

r22575:d7f7f186 default
r24992:7df090c9 default
Show More
dummycert.pem
56 lines | 2.2 KiB | application/pgp-keys | AscLexer
Mads Kiilerich
ssl: on OS X, use a dummy cert to trick Python/OpenSSL to use system CA certs...
r22575 A dummy certificate that will make OS X 10.6+ Python use the system CA
certificate store:
-----BEGIN CERTIFICATE-----
MIIBIzCBzgIJANjmj39sb3FmMA0GCSqGSIb3DQEBBQUAMBkxFzAVBgNVBAMTDmhn
LmV4YW1wbGUuY29tMB4XDTE0MDgzMDA4NDU1OVoXDTE0MDgyOTA4NDU1OVowGTEX
MBUGA1UEAxMOaGcuZXhhbXBsZS5jb20wXDANBgkqhkiG9w0BAQEFAANLADBIAkEA
mh/ZySGlcq0ALNLmA1gZqt61HruywPrRk6WyrLJRgt+X7OP9FFlEfl2tzHfzqvmK
CtSQoPINWOdAJMekBYFgKQIDAQABMA0GCSqGSIb3DQEBBQUAA0EAF9h49LkSqJ6a
IlpogZuUHtihXeKZBsiktVIDlDccYsNy0RSh9XxUfhk+XMLw8jBlYvcltSXdJ7We
aKdQRekuMQ==
-----END CERTIFICATE-----
This certificate was generated to be syntactically valid but never be usable;
it expired before it became valid.
Created as:
$ cat > cn.conf << EOT
> [req]
> distinguished_name = req_distinguished_name
> [req_distinguished_name]
> commonName = Common Name
> commonName_default = no.example.com
> EOT
$ openssl req -nodes -new -x509 -keyout /dev/null \
> -out dummycert.pem -days -1 -config cn.conf -subj '/CN=hg.example.com'
To verify the content of this certificate:
$ openssl x509 -in dummycert.pem -noout -text
Certificate:
Data:
Version: 1 (0x0)
Serial Number: 15629337334278746470 (0xd8e68f7f6c6f7166)
Signature Algorithm: sha1WithRSAEncryption
Issuer: CN=hg.example.com
Validity
Not Before: Aug 30 08:45:59 2014 GMT
Not After : Aug 29 08:45:59 2014 GMT
Subject: CN=hg.example.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (512 bit)
Modulus:
00:9a:1f:d9:c9:21:a5:72:ad:00:2c:d2:e6:03:58:
19:aa:de:b5:1e:bb:b2:c0:fa:d1:93:a5:b2:ac:b2:
51:82:df:97:ec:e3:fd:14:59:44:7e:5d:ad:cc:77:
f3:aa:f9:8a:0a:d4:90:a0:f2:0d:58:e7:40:24:c7:
a4:05:81:60:29
Exponent: 65537 (0x10001)
Signature Algorithm: sha1WithRSAEncryption
17:d8:78:f4:b9:12:a8:9e:9a:22:5a:68:81:9b:94:1e:d8:a1:
5d:e2:99:06:c8:a4:b5:52:03:94:37:1c:62:c3:72:d1:14:a1:
f5:7c:54:7e:19:3e:5c:c2:f0:f2:30:65:62:f7:25:b5:25:dd:
27:b5:9e:68:a7:50:45:e9:2e:31