##// END OF EJS Templates
rust-nodemap: pure Rust example...
rust-nodemap: pure Rust example To run, use `cargo run --release --example nodemap` This demonstrates that simple scenarios entirely written in Rust can content themselves with `NodeTree<T>`. The example mmaps both the nodemap file and the changelog index. We had of course to include an implementation of `RevlogIndex` directly, which isn't much at this stage. It felt a bit prematurate to include it in the lib. Here are some first performance measurements, obtained with this example, on a clone of mozilla-central with 440000 changesets: (create) Nodemap constructed in RAM in 153.638305ms (query CAE63161B68962) found in 22.362us: Ok(Some(269489)) (bench) Did 3 queries in 36.418µs (mean 12.139µs) (bench) Did 50 queries in 184.318µs (mean 3.686µs) (bench) Did 100000 queries in 31.053461ms (mean 310ns) To be fair, even between bench runs, results tend to depend whether the file is still in kernel caches, and it's not so easy to get back to a real cold start. The worst we've seen was in the 50us ballpark. In any busy server setting, the pages would always be in RAM. We hope it's good enough not to be significantly slower on any concrete Mercurial operation than the C nodetree when fully in RAM, and of course this implementation has the serious headstart advantage of persistence. Differential Revision: https://phab.mercurial-scm.org/D7797

File last commit:

r44869:a98ba698 default
r44870:8f7c6656 default
Show More
nodemap.rs
936 lines | 29.0 KiB | application/rls-services+xml | RustLexer
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600 // Copyright 2018-2020 Georges Racinet <georges.racinet@octobus.net>
// and Mercurial contributors
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Indexing facilities for fast retrieval of `Revision` from `Node`
//!
//! This provides a variation on the 16-ary radix tree that is
//! provided as "nodetree" in revlog.c, ready for append-only persistence
//! on disk.
//!
//! Following existing implicit conventions, the "nodemap" terminology
//! is used in a more abstract context.
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 use super::{
Node, NodeError, NodePrefix, NodePrefixRef, Revision, RevlogIndex,
};
Georges Racinet
rust-nodemap: insert method...
r44831
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600 use std::fmt;
Georges Racinet
rust-nodemap: input/output primitives...
r44869 use std::mem;
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 use std::ops::Deref;
Georges Racinet
rust-nodemap: abstracting the indexing...
r44645 use std::ops::Index;
Georges Racinet
rust-nodemap: input/output primitives...
r44869 use std::slice;
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644
#[derive(Debug, PartialEq)]
pub enum NodeMapError {
MultipleResults,
InvalidNodePrefix(NodeError),
/// A `Revision` stored in the nodemap could not be found in the index
RevisionNotInIndex(Revision),
}
impl From<NodeError> for NodeMapError {
fn from(err: NodeError) -> Self {
NodeMapError::InvalidNodePrefix(err)
}
}
/// Mapping system from Mercurial nodes to revision numbers.
///
/// ## `RevlogIndex` and `NodeMap`
///
/// One way to think about their relationship is that
/// the `NodeMap` is a prefix-oriented reverse index of the `Node` information
/// carried by a [`RevlogIndex`].
///
/// Many of the methods in this trait take a `RevlogIndex` argument
/// which is used for validation of their results. This index must naturally
/// be the one the `NodeMap` is about, and it must be consistent.
///
/// Notably, the `NodeMap` must not store
/// information about more `Revision` values than there are in the index.
/// In these methods, an encountered `Revision` is not in the index, a
/// [`RevisionNotInIndex`] error is returned.
///
/// In insert operations, the rule is thus that the `NodeMap` must always
/// be updated after the `RevlogIndex`
/// be updated first, and the `NodeMap` second.
///
/// [`RevisionNotInIndex`]: enum.NodeMapError.html#variant.RevisionNotInIndex
/// [`RevlogIndex`]: ../trait.RevlogIndex.html
pub trait NodeMap {
/// Find the unique `Revision` having the given `Node`
///
/// If no Revision matches the given `Node`, `Ok(None)` is returned.
fn find_node(
&self,
index: &impl RevlogIndex,
node: &Node,
) -> Result<Option<Revision>, NodeMapError> {
self.find_bin(index, node.into())
}
/// Find the unique Revision whose `Node` starts with a given binary prefix
///
/// If no Revision matches the given prefix, `Ok(None)` is returned.
///
/// If several Revisions match the given prefix, a [`MultipleResults`]
/// error is returned.
fn find_bin<'a>(
&self,
idx: &impl RevlogIndex,
prefix: NodePrefixRef<'a>,
) -> Result<Option<Revision>, NodeMapError>;
/// Find the unique Revision whose `Node` hexadecimal string representation
/// starts with a given prefix
///
/// If no Revision matches the given prefix, `Ok(None)` is returned.
///
/// If several Revisions match the given prefix, a [`MultipleResults`]
/// error is returned.
fn find_hex(
&self,
idx: &impl RevlogIndex,
prefix: &str,
) -> Result<Option<Revision>, NodeMapError> {
self.find_bin(idx, NodePrefix::from_hex(prefix)?.borrow())
}
}
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600
Georges Racinet
rust-nodemap: insert method...
r44831 pub trait MutableNodeMap: NodeMap {
fn insert<I: RevlogIndex>(
&mut self,
index: &I,
node: &Node,
rev: Revision,
) -> Result<(), NodeMapError>;
}
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600 /// Low level NodeTree [`Blocks`] elements
///
/// These are exactly as for instance on persistent storage.
type RawElement = i32;
/// High level representation of values in NodeTree
/// [`Blocks`](struct.Block.html)
///
/// This is the high level representation that most algorithms should
/// use.
#[derive(Clone, Debug, Eq, PartialEq)]
enum Element {
Rev(Revision),
Block(usize),
None,
}
impl From<RawElement> for Element {
/// Conversion from low level representation, after endianness conversion.
///
/// See [`Block`](struct.Block.html) for explanation about the encoding.
fn from(raw: RawElement) -> Element {
if raw >= 0 {
Element::Block(raw as usize)
} else if raw == -1 {
Element::None
} else {
Element::Rev(-raw - 2)
}
}
}
impl From<Element> for RawElement {
fn from(element: Element) -> RawElement {
match element {
Element::None => 0,
Element::Block(i) => i as RawElement,
Element::Rev(rev) => -rev - 2,
}
}
}
/// A logical block of the `NodeTree`, packed with a fixed size.
///
/// These are always used in container types implementing `Index<Block>`,
/// such as `&Block`
///
/// As an array of integers, its ith element encodes that the
/// ith potential edge from the block, representing the ith hexadecimal digit
/// (nybble) `i` is either:
///
/// - absent (value -1)
/// - another `Block` in the same indexable container (value ≥ 0)
/// - a `Revision` leaf (value ≤ -2)
///
/// Endianness has to be fixed for consistency on shared storage across
/// different architectures.
///
/// A key difference with the C `nodetree` is that we need to be
/// able to represent the [`Block`] at index 0, hence -1 is the empty marker
/// rather than 0 and the `Revision` range upper limit of -2 instead of -1.
///
/// Another related difference is that `NULL_REVISION` (-1) is not
/// represented at all, because we want an immutable empty nodetree
/// to be valid.
Georges Racinet
rust-nodemap: input/output primitives...
r44869 #[derive(Copy, Clone)]
pub struct Block([u8; BLOCK_SIZE]);
/// Not derivable for arrays of length >32 until const generics are stable
impl PartialEq for Block {
fn eq(&self, other: &Self) -> bool {
&self.0[..] == &other.0[..]
}
}
pub const BLOCK_SIZE: usize = 64;
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600
impl Block {
fn new() -> Self {
Georges Racinet
rust-nodemap: input/output primitives...
r44869 // -1 in 2's complement to create an absent node
let byte: u8 = 255;
Block([byte; BLOCK_SIZE])
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600 }
fn get(&self, nybble: u8) -> Element {
Georges Racinet
rust-nodemap: input/output primitives...
r44869 let index = nybble as usize * mem::size_of::<RawElement>();
Element::from(RawElement::from_be_bytes([
self.0[index],
self.0[index + 1],
self.0[index + 2],
self.0[index + 3],
]))
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600 }
fn set(&mut self, nybble: u8, element: Element) {
Georges Racinet
rust-nodemap: input/output primitives...
r44869 let values = RawElement::to_be_bytes(element.into());
let index = nybble as usize * mem::size_of::<RawElement>();
self.0[index] = values[0];
self.0[index + 1] = values[1];
self.0[index + 2] = values[2];
self.0[index + 3] = values[3];
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600 }
}
impl fmt::Debug for Block {
/// sparse representation for testing and debugging purposes
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_map()
.entries((0..16).filter_map(|i| match self.get(i) {
Element::None => None,
element => Some((i, element)),
}))
.finish()
}
}
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646 /// A mutable 16-radix tree with the root block logically at the end
///
/// Because of the append only nature of our node trees, we need to
/// keep the original untouched and store new blocks separately.
///
/// The mutable root `Block` is kept apart so that we don't have to rebump
/// it on each insertion.
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 pub struct NodeTree {
readonly: Box<dyn Deref<Target = [Block]> + Send>,
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646 growable: Vec<Block>,
root: Block,
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 }
Georges Racinet
rust-nodemap: abstracting the indexing...
r44645 impl Index<usize> for NodeTree {
type Output = Block;
fn index(&self, i: usize) -> &Block {
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646 let ro_len = self.readonly.len();
if i < ro_len {
&self.readonly[i]
} else if i == ro_len + self.growable.len() {
&self.root
} else {
&self.growable[i - ro_len]
}
Georges Racinet
rust-nodemap: abstracting the indexing...
r44645 }
}
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 /// Return `None` unless the `Node` for `rev` has given prefix in `index`.
Georges Racinet
rust-nodemap: input/output primitives...
r44869 fn has_prefix_or_none(
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 idx: &impl RevlogIndex,
Georges Racinet
rust-nodemap: input/output primitives...
r44869 prefix: NodePrefixRef,
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 rev: Revision,
) -> Result<Option<Revision>, NodeMapError> {
idx.node(rev)
.ok_or_else(|| NodeMapError::RevisionNotInIndex(rev))
.map(|node| {
if prefix.is_prefix_of(node) {
Some(rev)
} else {
None
}
})
}
impl NodeTree {
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646 /// Initiate a NodeTree from an immutable slice-like of `Block`
///
/// We keep `readonly` and clone its root block if it isn't empty.
fn new(readonly: Box<dyn Deref<Target = [Block]> + Send>) -> Self {
let root = readonly
.last()
.map(|b| b.clone())
.unwrap_or_else(|| Block::new());
NodeTree {
readonly: readonly,
growable: Vec::new(),
root: root,
}
Georges Racinet
rust-nodemap: abstracting the indexing...
r44645 }
Georges Racinet
rust-nodemap: input/output primitives...
r44869 /// Create from an opaque bunch of bytes
///
/// The created `NodeTreeBytes` from `buffer`,
/// of which exactly `amount` bytes are used.
///
/// - `buffer` could be derived from `PyBuffer` and `Mmap` objects.
/// - `offset` allows for the final file format to include fixed data
/// (generation number, behavioural flags)
/// - `amount` is expressed in bytes, and is not automatically derived from
/// `bytes`, so that a caller that manages them atomically can perform
/// temporary disk serializations and still rollback easily if needed.
/// First use-case for this would be to support Mercurial shell hooks.
///
/// panics if `buffer` is smaller than `amount`
pub fn load_bytes(
bytes: Box<dyn Deref<Target = [u8]> + Send>,
amount: usize,
) -> Self {
NodeTree::new(Box::new(NodeTreeBytes::new(bytes, amount)))
}
/// Retrieve added `Block` and the original immutable data
pub fn into_readonly_and_added(
self,
) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<Block>) {
let mut vec = self.growable;
let readonly = self.readonly;
if readonly.last() != Some(&self.root) {
vec.push(self.root);
}
(readonly, vec)
}
/// Retrieve added `Blocks` as bytes, ready to be written to persistent
/// storage
pub fn into_readonly_and_added_bytes(
self,
) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<u8>) {
let (readonly, vec) = self.into_readonly_and_added();
// Prevent running `v`'s destructor so we are in complete control
// of the allocation.
let vec = mem::ManuallyDrop::new(vec);
// Transmute the `Vec<Block>` to a `Vec<u8>`. Blocks are contiguous
// bytes, so this is perfectly safe.
let bytes = unsafe {
// Assert that `Block` hasn't been changed and has no padding
let _: [u8; 4 * BLOCK_SIZE] =
std::mem::transmute([Block::new(); 4]);
// /!\ Any use of `vec` after this is use-after-free.
// TODO: use `into_raw_parts` once stabilized
Vec::from_raw_parts(
vec.as_ptr() as *mut u8,
vec.len() * BLOCK_SIZE,
vec.capacity() * BLOCK_SIZE,
)
};
(readonly, bytes)
}
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646 /// Total number of blocks
fn len(&self) -> usize {
self.readonly.len() + self.growable.len() + 1
}
/// Implemented for completeness
///
/// A `NodeTree` always has at least the mutable root block.
#[allow(dead_code)]
Georges Racinet
rust-nodemap: abstracting the indexing...
r44645 fn is_empty(&self) -> bool {
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646 false
Georges Racinet
rust-nodemap: abstracting the indexing...
r44645 }
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 /// Main working method for `NodeTree` searches
///
/// This partial implementation lacks special cases for NULL_REVISION
fn lookup<'p>(
&self,
prefix: NodePrefixRef<'p>,
) -> Result<Option<Revision>, NodeMapError> {
Georges Racinet
rust-nodemap: generic NodeTreeVisitor...
r44647 for visit_item in self.visit(prefix) {
if let Some(opt) = visit_item.final_revision() {
return Ok(opt);
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 }
}
Err(NodeMapError::MultipleResults)
}
Georges Racinet
rust-nodemap: generic NodeTreeVisitor...
r44647
fn visit<'n, 'p>(
&'n self,
prefix: NodePrefixRef<'p>,
) -> NodeTreeVisitor<'n, 'p> {
NodeTreeVisitor {
nt: self,
prefix: prefix,
visit: self.len() - 1,
nybble_idx: 0,
done: false,
}
}
Georges Racinet
rust-nodemap: insert method...
r44831 /// Return a mutable reference for `Block` at index `idx`.
///
/// If `idx` lies in the immutable area, then the reference is to
/// a newly appended copy.
///
/// Returns (new_idx, glen, mut_ref) where
///
/// - `new_idx` is the index of the mutable `Block`
/// - `mut_ref` is a mutable reference to the mutable Block.
/// - `glen` is the new length of `self.growable`
///
/// Note: the caller wouldn't be allowed to query `self.growable.len()`
/// itself because of the mutable borrow taken with the returned `Block`
fn mutable_block(&mut self, idx: usize) -> (usize, &mut Block, usize) {
let ro_blocks = &self.readonly;
let ro_len = ro_blocks.len();
let glen = self.growable.len();
if idx < ro_len {
// TODO OPTIM I think this makes two copies
self.growable.push(ro_blocks[idx].clone());
(glen + ro_len, &mut self.growable[glen], glen + 1)
} else if glen + ro_len == idx {
(idx, &mut self.root, glen)
} else {
(idx, &mut self.growable[idx - ro_len], glen)
}
}
/// Main insertion method
///
/// This will dive in the node tree to find the deepest `Block` for
/// `node`, split it as much as needed and record `node` in there.
/// The method then backtracks, updating references in all the visited
/// blocks from the root.
///
/// All the mutated `Block` are copied first to the growable part if
/// needed. That happens for those in the immutable part except the root.
pub fn insert<I: RevlogIndex>(
&mut self,
index: &I,
node: &Node,
rev: Revision,
) -> Result<(), NodeMapError> {
let ro_len = &self.readonly.len();
let mut visit_steps: Vec<_> = self.visit(node.into()).collect();
let read_nybbles = visit_steps.len();
// visit_steps cannot be empty, since we always visit the root block
let deepest = visit_steps.pop().unwrap();
let (mut block_idx, mut block, mut glen) =
self.mutable_block(deepest.block_idx);
if let Element::Rev(old_rev) = deepest.element {
let old_node = index
.node(old_rev)
.ok_or_else(|| NodeMapError::RevisionNotInIndex(old_rev))?;
if old_node == node {
return Ok(()); // avoid creating lots of useless blocks
}
// Looping over the tail of nybbles in both nodes, creating
// new blocks until we find the difference
let mut new_block_idx = ro_len + glen;
let mut nybble = deepest.nybble;
for nybble_pos in read_nybbles..node.nybbles_len() {
block.set(nybble, Element::Block(new_block_idx));
let new_nybble = node.get_nybble(nybble_pos);
let old_nybble = old_node.get_nybble(nybble_pos);
if old_nybble == new_nybble {
self.growable.push(Block::new());
block = &mut self.growable[glen];
glen += 1;
new_block_idx += 1;
nybble = new_nybble;
} else {
let mut new_block = Block::new();
new_block.set(old_nybble, Element::Rev(old_rev));
new_block.set(new_nybble, Element::Rev(rev));
self.growable.push(new_block);
break;
}
}
} else {
// Free slot in the deepest block: no splitting has to be done
block.set(deepest.nybble, Element::Rev(rev));
}
// Backtrack over visit steps to update references
while let Some(visited) = visit_steps.pop() {
let to_write = Element::Block(block_idx);
if visit_steps.is_empty() {
self.root.set(visited.nybble, to_write);
break;
}
let (new_idx, block, _) = self.mutable_block(visited.block_idx);
if block.get(visited.nybble) == to_write {
break;
}
block.set(visited.nybble, to_write);
block_idx = new_idx;
}
Ok(())
}
Georges Racinet
rust-nodemap: generic NodeTreeVisitor...
r44647 }
Georges Racinet
rust-nodemap: input/output primitives...
r44869 pub struct NodeTreeBytes {
buffer: Box<dyn Deref<Target = [u8]> + Send>,
len_in_blocks: usize,
}
impl NodeTreeBytes {
fn new(
buffer: Box<dyn Deref<Target = [u8]> + Send>,
amount: usize,
) -> Self {
assert!(buffer.len() >= amount);
let len_in_blocks = amount / BLOCK_SIZE;
NodeTreeBytes {
buffer,
len_in_blocks,
}
}
}
impl Deref for NodeTreeBytes {
type Target = [Block];
fn deref(&self) -> &[Block] {
unsafe {
slice::from_raw_parts(
(&self.buffer).as_ptr() as *const Block,
self.len_in_blocks,
)
}
}
}
Georges Racinet
rust-nodemap: generic NodeTreeVisitor...
r44647 struct NodeTreeVisitor<'n, 'p> {
nt: &'n NodeTree,
prefix: NodePrefixRef<'p>,
visit: usize,
nybble_idx: usize,
done: bool,
}
#[derive(Debug, PartialEq, Clone)]
struct NodeTreeVisitItem {
block_idx: usize,
nybble: u8,
element: Element,
}
impl<'n, 'p> Iterator for NodeTreeVisitor<'n, 'p> {
type Item = NodeTreeVisitItem;
fn next(&mut self) -> Option<Self::Item> {
if self.done || self.nybble_idx >= self.prefix.len() {
return None;
}
let nybble = self.prefix.get_nybble(self.nybble_idx);
self.nybble_idx += 1;
let visit = self.visit;
let element = self.nt[visit].get(nybble);
if let Element::Block(idx) = element {
self.visit = idx;
} else {
self.done = true;
}
Some(NodeTreeVisitItem {
block_idx: visit,
nybble: nybble,
element: element,
})
}
}
impl NodeTreeVisitItem {
// Return `Some(opt)` if this item is final, with `opt` being the
// `Revision` that it may represent.
//
// If the item is not terminal, return `None`
fn final_revision(&self) -> Option<Option<Revision>> {
match self.element {
Element::Block(_) => None,
Element::Rev(r) => Some(Some(r)),
Element::None => Some(None),
}
}
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 }
impl From<Vec<Block>> for NodeTree {
fn from(vec: Vec<Block>) -> Self {
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646 Self::new(Box::new(vec))
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 }
}
impl fmt::Debug for NodeTree {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646 let readonly: &[Block] = &*self.readonly;
write!(
f,
"readonly: {:?}, growable: {:?}, root: {:?}",
readonly, self.growable, self.root
)
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 }
}
Georges Racinet
rust-nodemap: insert method...
r44831 impl Default for NodeTree {
/// Create a fully mutable empty NodeTree
fn default() -> Self {
NodeTree::new(Box::new(Vec::new()))
}
}
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 impl NodeMap for NodeTree {
fn find_bin<'a>(
&self,
idx: &impl RevlogIndex,
prefix: NodePrefixRef<'a>,
) -> Result<Option<Revision>, NodeMapError> {
self.lookup(prefix.clone()).and_then(|opt| {
opt.map_or(Ok(None), |rev| has_prefix_or_none(idx, prefix, rev))
})
}
}
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600 #[cfg(test)]
mod tests {
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 use super::NodeMapError::*;
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600 use super::*;
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 use crate::revlog::node::{hex_pad_right, Node};
use std::collections::HashMap;
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600
/// Creates a `Block` using a syntax close to the `Debug` output
macro_rules! block {
{$($nybble:tt : $variant:ident($val:tt)),*} => (
{
let mut block = Block::new();
$(block.set($nybble, Element::$variant($val)));*;
block
}
)
}
#[test]
fn test_block_debug() {
let mut block = Block::new();
block.set(1, Element::Rev(3));
block.set(10, Element::Block(0));
assert_eq!(format!("{:?}", block), "{1: Rev(3), 10: Block(0)}");
}
#[test]
fn test_block_macro() {
let block = block! {5: Block(2)};
assert_eq!(format!("{:?}", block), "{5: Block(2)}");
let block = block! {13: Rev(15), 5: Block(2)};
assert_eq!(format!("{:?}", block), "{5: Block(2), 13: Rev(15)}");
}
#[test]
fn test_raw_block() {
Georges Racinet
rust-nodemap: input/output primitives...
r44869 let mut raw = [255u8; 64];
let mut counter = 0;
for val in [0, 15, -2, -1, -3].iter() {
for byte in RawElement::to_be_bytes(*val).iter() {
raw[counter] = *byte;
counter += 1;
}
}
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600 let block = Block(raw);
assert_eq!(block.get(0), Element::Block(0));
assert_eq!(block.get(1), Element::Block(15));
assert_eq!(block.get(3), Element::None);
assert_eq!(block.get(2), Element::Rev(0));
assert_eq!(block.get(4), Element::Rev(1));
}
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644
type TestIndex = HashMap<Revision, Node>;
impl RevlogIndex for TestIndex {
fn node(&self, rev: Revision) -> Option<&Node> {
self.get(&rev)
}
fn len(&self) -> usize {
self.len()
}
}
Georges Racinet
rust-nodemap: insert method...
r44831 /// Pad hexadecimal Node prefix with zeros on the right
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 ///
/// This avoids having to repeatedly write very long hexadecimal
/// strings for test data, and brings actual hash size independency.
Georges Racinet
rust-nodemap: insert method...
r44831 #[cfg(test)]
fn pad_node(hex: &str) -> Node {
Node::from_hex(&hex_pad_right(hex)).unwrap()
}
/// Pad hexadecimal Node prefix with zeros on the right, then insert
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 fn pad_insert(idx: &mut TestIndex, rev: Revision, hex: &str) {
Georges Racinet
rust-nodemap: insert method...
r44831 idx.insert(rev, pad_node(hex));
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 }
fn sample_nodetree() -> NodeTree {
NodeTree::from(vec![
block![0: Rev(9)],
block![0: Rev(0), 1: Rev(9)],
block![0: Block(1), 1:Rev(1)],
])
}
#[test]
fn test_nt_debug() {
let nt = sample_nodetree();
assert_eq!(
format!("{:?}", nt),
"readonly: \
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646 [{0: Rev(9)}, {0: Rev(0), 1: Rev(9)}, {0: Block(1), 1: Rev(1)}], \
growable: [], \
root: {0: Block(1), 1: Rev(1)}",
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 );
}
#[test]
fn test_immutable_find_simplest() -> Result<(), NodeMapError> {
let mut idx: TestIndex = HashMap::new();
pad_insert(&mut idx, 1, "1234deadcafe");
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646 let nt = NodeTree::from(vec![block! {1: Rev(1)}]);
Georges Racinet
rust-nodemap: NodeMap trait with simplest implementation...
r44644 assert_eq!(nt.find_hex(&idx, "1")?, Some(1));
assert_eq!(nt.find_hex(&idx, "12")?, Some(1));
assert_eq!(nt.find_hex(&idx, "1234de")?, Some(1));
assert_eq!(nt.find_hex(&idx, "1a")?, None);
assert_eq!(nt.find_hex(&idx, "ab")?, None);
// and with full binary Nodes
assert_eq!(nt.find_node(&idx, idx.get(&1).unwrap())?, Some(1));
let unknown = Node::from_hex(&hex_pad_right("3d")).unwrap();
assert_eq!(nt.find_node(&idx, &unknown)?, None);
Ok(())
}
#[test]
fn test_immutable_find_one_jump() {
let mut idx = TestIndex::new();
pad_insert(&mut idx, 9, "012");
pad_insert(&mut idx, 0, "00a");
let nt = sample_nodetree();
assert_eq!(nt.find_hex(&idx, "0"), Err(MultipleResults));
assert_eq!(nt.find_hex(&idx, "01"), Ok(Some(9)));
assert_eq!(nt.find_hex(&idx, "00"), Ok(Some(0)));
assert_eq!(nt.find_hex(&idx, "00a"), Ok(Some(0)));
}
Georges Racinet
rust-nodemap: mutable NodeTree data structure...
r44646
#[test]
fn test_mutated_find() -> Result<(), NodeMapError> {
let mut idx = TestIndex::new();
pad_insert(&mut idx, 9, "012");
pad_insert(&mut idx, 0, "00a");
pad_insert(&mut idx, 2, "cafe");
pad_insert(&mut idx, 3, "15");
pad_insert(&mut idx, 1, "10");
let nt = NodeTree {
readonly: sample_nodetree().readonly,
growable: vec![block![0: Rev(1), 5: Rev(3)]],
root: block![0: Block(1), 1:Block(3), 12: Rev(2)],
};
assert_eq!(nt.find_hex(&idx, "10")?, Some(1));
assert_eq!(nt.find_hex(&idx, "c")?, Some(2));
assert_eq!(nt.find_hex(&idx, "00")?, Some(0));
assert_eq!(nt.find_hex(&idx, "01")?, Some(9));
Ok(())
}
Georges Racinet
rust-nodemap: insert method...
r44831
struct TestNtIndex {
index: TestIndex,
nt: NodeTree,
}
impl TestNtIndex {
fn new() -> Self {
TestNtIndex {
index: HashMap::new(),
nt: NodeTree::default(),
}
}
fn insert(
&mut self,
rev: Revision,
hex: &str,
) -> Result<(), NodeMapError> {
let node = pad_node(hex);
self.index.insert(rev, node.clone());
self.nt.insert(&self.index, &node, rev)?;
Ok(())
}
fn find_hex(
&self,
prefix: &str,
) -> Result<Option<Revision>, NodeMapError> {
self.nt.find_hex(&self.index, prefix)
}
/// Drain `added` and restart a new one
fn commit(self) -> Self {
let mut as_vec: Vec<Block> =
self.nt.readonly.iter().map(|block| block.clone()).collect();
as_vec.extend(self.nt.growable);
as_vec.push(self.nt.root);
Self {
index: self.index,
nt: NodeTree::from(as_vec).into(),
}
}
}
#[test]
fn test_insert_full_mutable() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(0, "1234")?;
assert_eq!(idx.find_hex("1")?, Some(0));
assert_eq!(idx.find_hex("12")?, Some(0));
// let's trigger a simple split
idx.insert(1, "1a34")?;
assert_eq!(idx.nt.growable.len(), 1);
assert_eq!(idx.find_hex("12")?, Some(0));
assert_eq!(idx.find_hex("1a")?, Some(1));
// reinserting is a no_op
idx.insert(1, "1a34")?;
assert_eq!(idx.nt.growable.len(), 1);
assert_eq!(idx.find_hex("12")?, Some(0));
assert_eq!(idx.find_hex("1a")?, Some(1));
idx.insert(2, "1a01")?;
assert_eq!(idx.nt.growable.len(), 2);
assert_eq!(idx.find_hex("1a"), Err(NodeMapError::MultipleResults));
assert_eq!(idx.find_hex("12")?, Some(0));
assert_eq!(idx.find_hex("1a3")?, Some(1));
assert_eq!(idx.find_hex("1a0")?, Some(2));
assert_eq!(idx.find_hex("1a12")?, None);
// now let's make it split and create more than one additional block
idx.insert(3, "1a345")?;
assert_eq!(idx.nt.growable.len(), 4);
assert_eq!(idx.find_hex("1a340")?, Some(1));
assert_eq!(idx.find_hex("1a345")?, Some(3));
assert_eq!(idx.find_hex("1a341")?, None);
Ok(())
}
#[test]
fn test_insert_extreme_splitting() -> Result<(), NodeMapError> {
// check that the splitting loop is long enough
let mut nt_idx = TestNtIndex::new();
let nt = &mut nt_idx.nt;
let idx = &mut nt_idx.index;
let node0_hex = hex_pad_right("444444");
let mut node1_hex = hex_pad_right("444444").clone();
node1_hex.pop();
node1_hex.push('5');
let node0 = Node::from_hex(&node0_hex).unwrap();
let node1 = Node::from_hex(&node1_hex).unwrap();
idx.insert(0, node0.clone());
nt.insert(idx, &node0, 0)?;
idx.insert(1, node1.clone());
nt.insert(idx, &node1, 1)?;
assert_eq!(nt.find_bin(idx, (&node0).into())?, Some(0));
assert_eq!(nt.find_bin(idx, (&node1).into())?, Some(1));
Ok(())
}
#[test]
fn test_insert_partly_immutable() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(0, "1234")?;
idx.insert(1, "1235")?;
idx.insert(2, "131")?;
idx.insert(3, "cafe")?;
let mut idx = idx.commit();
assert_eq!(idx.find_hex("1234")?, Some(0));
assert_eq!(idx.find_hex("1235")?, Some(1));
assert_eq!(idx.find_hex("131")?, Some(2));
assert_eq!(idx.find_hex("cafe")?, Some(3));
idx.insert(4, "123A")?;
assert_eq!(idx.find_hex("1234")?, Some(0));
assert_eq!(idx.find_hex("1235")?, Some(1));
assert_eq!(idx.find_hex("131")?, Some(2));
assert_eq!(idx.find_hex("cafe")?, Some(3));
assert_eq!(idx.find_hex("123A")?, Some(4));
idx.insert(5, "c0")?;
assert_eq!(idx.find_hex("cafe")?, Some(3));
assert_eq!(idx.find_hex("c0")?, Some(5));
assert_eq!(idx.find_hex("c1")?, None);
assert_eq!(idx.find_hex("1234")?, Some(0));
Ok(())
}
Georges Racinet
rust-nodemap: input/output primitives...
r44869
#[test]
fn test_into_added_empty() {
assert!(sample_nodetree().into_readonly_and_added().1.is_empty());
assert!(sample_nodetree()
.into_readonly_and_added_bytes()
.1
.is_empty());
}
#[test]
fn test_into_added_bytes() -> Result<(), NodeMapError> {
let mut idx = TestNtIndex::new();
idx.insert(0, "1234")?;
let mut idx = idx.commit();
idx.insert(4, "cafe")?;
let (_, bytes) = idx.nt.into_readonly_and_added_bytes();
// only the root block has been changed
assert_eq!(bytes.len(), BLOCK_SIZE);
// big endian for -2
assert_eq!(&bytes[4..2 * 4], [255, 255, 255, 254]);
// big endian for -6
assert_eq!(&bytes[12 * 4..13 * 4], [255, 255, 255, 250]);
Ok(())
}
Georges Racinet
rust-nodemap: building blocks for nodetree structures...
r44600 }