##// END OF EJS Templates
rust: new rust options in setup.py...
rust: new rust options in setup.py The --rust global option turns on usage (and by default compilation) of the rust-cpython based mercurial.rustext. Similarly to what's previously done for zstd, there is a --no-rust option for the build_ext subcommand in order not to build mercurial.rustext, allowing for an OS distribution to prebuild it. The HGWITHRUSTEXT environment variable is still honored, and has the same effect as before, but now it works mostly by making the --rust global option defaulting to True, with some special cases for the direct-ffi case (see more about that below) Coincidentally, the --rust flag can also be passed from the make commands, like actually all global options, in the PURE variable make local PURE=--rust This feels inappropriate, though, and we should follow up with a proper make variable for that case. Although the direct-ffi bindings aren't directly useful any more, we keep them at this stage because - they provide a short prototyping path for experiments in which a C extension module has to call into a Rust extension. The proper way of doing that would be to use capsules, and it's best to wait for our pull request onto rust-cpython for that: https://github.com/dgrunwald/rust-cpython/pull/169 - Build support for capsules defined in Rust will probably need to reuse some of what's currently in use for direct-ffi.

File last commit:

r38806:e7aa113b default
r42653:94167e70 default
Show More
pvec.py
215 lines | 5.9 KiB | text/x-python | PythonLexer
Matt Mackall
pvec: introduce pvecs
r16249 # pvec.py - probabilistic vector clocks for Mercurial
#
# Copyright 2012 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
'''
A "pvec" is a changeset property based on the theory of vector clocks
that can be compared to discover relatedness without consulting a
graph. This can be useful for tasks like determining how a
disconnected patch relates to a repository.
Currently a pvec consist of 448 bits, of which 24 are 'depth' and the
remainder are a bit vector. It is represented as a 70-character base85
string.
Construction:
- a root changeset has a depth of 0 and a bit vector based on its hash
- a normal commit has a changeset where depth is increased by one and
one bit vector bit is flipped based on its hash
- a merge changeset pvec is constructed by copying changes from one pvec into
the other to balance its depth
Properties:
- for linear changes, difference in depth is always <= hamming distance
- otherwise, changes are probably divergent
- when hamming distance is < 200, we can reliably detect when pvecs are near
Issues:
- hamming distance ceases to work over distances of ~ 200
- detecting divergence is less accurate when the common ancestor is very close
to either revision or total distance is high
- this could probably be improved by modeling the relation between
delta and hdist
Uses:
- a patch pvec can be used to locate the nearest available common ancestor for
resolving conflicts
- ordering of patches can be established without a DAG
- two head pvecs can be compared to determine whether push/pull/merge is needed
and approximately how many changesets are involved
- can be used to find a heuristic divergence measure between changesets on
different branches
'''
Gregory Szorc
pvec: use absolute_import
r27501 from __future__ import absolute_import
from .node import nullrev
from . import (
Gregory Szorc
global: use pycompat.xrange()...
r38806 pycompat,
Gregory Szorc
pvec: use absolute_import
r27501 util,
)
Matt Mackall
pvec: introduce pvecs
r16249
_size = 448 # 70 chars b85-encoded
_bytes = _size / 8
_depthbits = 24
_depthbytes = _depthbits / 8
_vecbytes = _bytes - _depthbytes
_vecbits = _vecbytes * 8
Mads Kiilerich
fix trivial spelling errors
r17424 _radius = (_vecbits - 30) / 2 # high probability vectors are related
Matt Mackall
pvec: introduce pvecs
r16249
def _bin(bs):
'''convert a bytestring to a long'''
v = 0
for b in bs:
v = v * 256 + ord(b)
return v
def _str(v, l):
bs = ""
Gregory Szorc
global: use pycompat.xrange()...
r38806 for p in pycompat.xrange(l):
Matt Mackall
pvec: introduce pvecs
r16249 bs = chr(v & 255) + bs
v >>= 8
return bs
def _split(b):
'''depth and bitvec'''
return _bin(b[:_depthbytes]), _bin(b[_depthbytes:])
def _join(depth, bitvec):
return _str(depth, _depthbytes) + _str(bitvec, _vecbytes)
def _hweight(x):
c = 0
while x:
if x & 1:
c += 1
x >>= 1
return c
Gregory Szorc
global: use pycompat.xrange()...
r38806 _htab = [_hweight(x) for x in pycompat.xrange(256)]
Matt Mackall
pvec: introduce pvecs
r16249
def _hamming(a, b):
'''find the hamming distance between two longs'''
d = a ^ b
c = 0
while d:
c += _htab[d & 0xff]
d >>= 8
return c
def _mergevec(x, y, c):
# Ideally, this function would be x ^ y ^ ancestor, but finding
# ancestors is a nuisance. So instead we find the minimal number
# of changes to balance the depth and hamming distance
d1, v1 = x
d2, v2 = y
if d1 < d2:
d1, d2, v1, v2 = d2, d1, v2, v1
hdist = _hamming(v1, v2)
ddist = d1 - d2
v = v1
m = v1 ^ v2 # mask of different bits
i = 1
if hdist > ddist:
# if delta = 10 and hdist = 100, then we need to go up 55 steps
# to the ancestor and down 45
changes = (hdist - ddist + 1) / 2
else:
# must make at least one change
changes = 1
depth = d1 + changes
# copy changes from v2
if m:
while changes:
if m & i:
v ^= i
changes -= 1
i <<= 1
else:
v = _flipbit(v, c)
return depth, v
def _flipbit(v, node):
# converting bit strings to longs is slow
bit = (hash(node) & 0xffffffff) % _vecbits
return v ^ (1<<bit)
def ctxpvec(ctx):
'''construct a pvec for ctx while filling in the cache'''
Matt Harbison
pvec: replace 'ctx._repo' with 'ctx.repo()'
r24339 r = ctx.repo()
Matt Mackall
pvec: introduce pvecs
r16249 if not util.safehasattr(r, "_pveccache"):
r._pveccache = {}
pvc = r._pveccache
if ctx.rev() not in pvc:
cl = r.changelog
Gregory Szorc
global: use pycompat.xrange()...
r38806 for n in pycompat.xrange(ctx.rev() + 1):
Matt Mackall
pvec: introduce pvecs
r16249 if n not in pvc:
node = cl.node(n)
p1, p2 = cl.parentrevs(n)
if p1 == nullrev:
# start with a 'random' vector at root
pvc[n] = (0, _bin((node * 3)[:_vecbytes]))
elif p2 == nullrev:
d, v = pvc[p1]
pvc[n] = (d + 1, _flipbit(v, node))
else:
pvc[n] = _mergevec(pvc[p1], pvc[p2], node)
bs = _join(*pvc[ctx.rev()])
Yuya Nishihara
base85: proxy through util module...
r32200 return pvec(util.b85encode(bs))
Matt Mackall
pvec: introduce pvecs
r16249
class pvec(object):
def __init__(self, hashorctx):
if isinstance(hashorctx, str):
self._bs = hashorctx
Yuya Nishihara
base85: proxy through util module...
r32200 self._depth, self._vec = _split(util.b85decode(hashorctx))
Matt Mackall
pvec: introduce pvecs
r16249 else:
Bryan O'Sullivan
pvec: use the correct name for an identifier...
r18918 self._vec = ctxpvec(hashorctx)
Matt Mackall
pvec: introduce pvecs
r16249
def __str__(self):
return self._bs
def __eq__(self, b):
return self._vec == b._vec and self._depth == b._depth
def __lt__(self, b):
delta = b._depth - self._depth
if delta < 0:
return False # always correct
if _hamming(self._vec, b._vec) > delta:
return False
return True
def __gt__(self, b):
return b < self
def __or__(self, b):
delta = abs(b._depth - self._depth)
if _hamming(self._vec, b._vec) <= delta:
return False
return True
def __sub__(self, b):
if self | b:
raise ValueError("concurrent pvecs")
return self._depth - b._depth
def distance(self, b):
d = abs(b._depth - self._depth)
h = _hamming(self._vec, b._vec)
return max(d, h)
def near(self, b):
dist = abs(b.depth - self._depth)
if dist > _radius or _hamming(self._vec, b._vec) > _radius:
return False