##// END OF EJS Templates
packaging: stage files and dynamically generate WiX installer...
packaging: stage files and dynamically generate WiX installer Like we did for Inno, we want to make the WiX installer "dumb" and simply consume source files from a directory tree rather than have to define every single file in installer files. This will greatly decrease the amount of effort required to maintain the WiX installer since we don't have to think that much about keeping files in sync. This commit changes the WiX packager to populate a staging directory as part of packaging. After it does so, it scans that directory and dynamically generates WiX XML defining the content within. The IDs and GUIDs being generated are deterministic. So, upgrades should work as expected in Windows Installer land. (WiX has a "heat" tool that can generate XML by walking the filesystem but it doesn't have this deterministic property, sadly.) As part of this change, GUIDs are now effectively reset. So the next upgrade should be a complete wipe and replace. This could potentially cause issues. But in my local testing, I was able to upgrade an existing 5.1.2 install without issue. Compared to the previous commit, the installed files differ in the following: * A ReleaseNotes.txt file is now included * A hgrc.d/editor.rc file is now generated (mercurial.rc has been updated to reflect this logical change to the content source) * All files are marked as read-only. Previously, only a subset of files were. This should help prevent unwanted tampering. Although we may want to consider use cases like modifying template files... This change also means that Inno and WiX are now using very similar code for managing the install layout. This means that on disk both packages are nearly identical. The differences in install layout are as follows: * Inno has a Copying.txt vs a COPYING.rtf for WiX. (The WiX installer wants to use RTF.) * Inno has a Mercurial.url file that is an internet shortcut to www.mercurial-scm.org. (This could potentially be removed.) * Inno includes msvc[mpr]90.dll files and WiX does not. (WiX installs the MSVC runtime via merge modules.) * Inno includes unins000.{dat,exe} files. (WiX's state is managed by Windows Installer, which places things elsewhere.) Because file lists are dynamically generated now, the test ensuring things remain in sync has been deleted. Good riddance. While this is a huge step towards unifying the Windows installers, there's still some improvements that can be made. But I think it is worth celebrating the milestone of getting both Inno and WiX to essentially share core packaging code and workflows. That should make it much easier to change the installers going forward. This will aid support of Python 3. Differential Revision: https://phab.mercurial-scm.org/D7173

File last commit:

r43207:69de49c4 default
r44022:94eac340 default
Show More
mem.h
380 lines | 11.8 KiB | text/x-c | CLexer
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 /*
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 * This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 */
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
/*-****************************************
* Compiler specifics
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
#if defined(__GNUC__)
# define MEM_STATIC static __inline __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
Gregory Szorc
zstandard: vendor python-zstandard 0.11...
r42237 #ifndef __has_builtin
# define __has_builtin(x) 0 /* compat. with non-clang compilers */
#endif
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 /* code only tested on 32 and 64 bits systems */
Gregory Szorc
zstd: vendor python-zstandard 0.7.0...
r30895 #define MEM_STATIC_ASSERT(c) { enum { MEM_static_assert = 1/(int)(!!(c)) }; }
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
/*-**************************************************************
* Basic Types
*****************************************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 #else
Gregory Szorc
zstandard: vendor python-zstandard 0.10.1...
r40157 # include <limits.h>
#if CHAR_BIT != 8
# error "this implementation requires char to be exactly 8-bit type"
#endif
Gregory Szorc
zstd: vendor python-zstandard 0.6.0...
r30822 typedef unsigned char BYTE;
Gregory Szorc
zstandard: vendor python-zstandard 0.10.1...
r40157 #if USHRT_MAX != 65535
# error "this implementation requires short to be exactly 16-bit type"
#endif
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 typedef unsigned short U16;
typedef signed short S16;
Gregory Szorc
zstandard: vendor python-zstandard 0.10.1...
r40157 #if UINT_MAX != 4294967295
# error "this implementation requires int to be exactly 32-bit type"
#endif
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 typedef unsigned int U32;
typedef signed int S32;
Gregory Szorc
zstandard: vendor python-zstandard 0.10.1...
r40157 /* note : there are no limits defined for long long type in C90.
* limits exist in C99, however, in such case, <stdint.h> is preferred */
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 typedef unsigned long long U64;
typedef signed long long S64;
#endif
/*-**************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 * Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable).
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets depending on alignment.
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 * In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6)
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define MEM_FORCE_MEMORY_ACCESS 2
Gregory Szorc
zstandard: vendor python-zstandard 0.12...
r43207 # elif defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 # define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard, by lying on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 __pragma( pack(push, 1) )
typedef struct { U16 v; } unalign16;
typedef struct { U32 v; } unalign32;
typedef struct { U64 v; } unalign64;
typedef struct { size_t v; } unalignArch;
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 __pragma( pack(pop) )
#else
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 typedef struct { U16 v; } __attribute__((packed)) unalign16;
typedef struct { U32 v; } __attribute__((packed)) unalign32;
typedef struct { U64 v; } __attribute__((packed)) unalign64;
typedef struct { size_t v; } __attribute__((packed)) unalignArch;
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 #endif
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; }
MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; }
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; }
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC size_t MEM_readST(const void* memPtr)
{
size_t val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U32 MEM_swap32(U32 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_ulong(in);
Gregory Szorc
zstandard: vendor python-zstandard 0.11...
r42237 #elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
|| (defined(__clang__) && __has_builtin(__builtin_bswap32))
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 return __builtin_bswap32(in);
#else
return ((in << 24) & 0xff000000 ) |
((in << 8) & 0x00ff0000 ) |
((in >> 8) & 0x0000ff00 ) |
((in >> 24) & 0x000000ff );
#endif
}
MEM_STATIC U64 MEM_swap64(U64 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_uint64(in);
Gregory Szorc
zstandard: vendor python-zstandard 0.11...
r42237 #elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
|| (defined(__clang__) && __has_builtin(__builtin_bswap64))
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 return __builtin_bswap64(in);
#else
return ((in << 56) & 0xff00000000000000ULL) |
((in << 40) & 0x00ff000000000000ULL) |
((in << 24) & 0x0000ff0000000000ULL) |
((in << 8) & 0x000000ff00000000ULL) |
((in >> 8) & 0x00000000ff000000ULL) |
((in >> 24) & 0x0000000000ff0000ULL) |
((in >> 40) & 0x000000000000ff00ULL) |
((in >> 56) & 0x00000000000000ffULL);
#endif
}
MEM_STATIC size_t MEM_swapST(size_t in)
{
if (MEM_32bits())
return (size_t)MEM_swap32((U32)in);
else
return (size_t)MEM_swap64((U64)in);
}
/*=== Little endian r/w ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian()) {
MEM_write16(memPtr, val);
} else {
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
{
MEM_writeLE16(memPtr, (U16)val);
((BYTE*)memPtr)[2] = (BYTE)(val>>16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
return MEM_swap32(MEM_read32(memPtr));
}
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, val32);
else
MEM_write32(memPtr, MEM_swap32(val32));
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
return MEM_swap64(MEM_read64(memPtr));
}
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, val64);
else
MEM_write64(memPtr, MEM_swap64(val64));
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeLE32(memPtr, (U32)val);
else
MEM_writeLE64(memPtr, (U64)val);
}
/*=== Big endian r/w ===*/
MEM_STATIC U32 MEM_readBE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap32(MEM_read32(memPtr));
else
return MEM_read32(memPtr);
}
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, MEM_swap32(val32));
else
MEM_write32(memPtr, val32);
}
MEM_STATIC U64 MEM_readBE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap64(MEM_read64(memPtr));
else
return MEM_read64(memPtr);
}
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, MEM_swap64(val64));
else
MEM_write64(memPtr, val64);
}
MEM_STATIC size_t MEM_readBEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readBE32(memPtr);
else
return (size_t)MEM_readBE64(memPtr);
}
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeBE32(memPtr, (U32)val);
else
MEM_writeBE64(memPtr, (U64)val);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */