zstd_compress_sequences.c
415 lines
| 18.5 KiB
| text/x-c
|
CLexer
Gregory Szorc
|
r43207 | /* | ||
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc. | ||||
* All rights reserved. | ||||
* | ||||
* This source code is licensed under both the BSD-style license (found in the | ||||
* LICENSE file in the root directory of this source tree) and the GPLv2 (found | ||||
* in the COPYING file in the root directory of this source tree). | ||||
* You may select, at your option, one of the above-listed licenses. | ||||
*/ | ||||
/*-************************************* | ||||
* Dependencies | ||||
***************************************/ | ||||
#include "zstd_compress_sequences.h" | ||||
/** | ||||
* -log2(x / 256) lookup table for x in [0, 256). | ||||
* If x == 0: Return 0 | ||||
* Else: Return floor(-log2(x / 256) * 256) | ||||
*/ | ||||
static unsigned const kInverseProbabilityLog256[256] = { | ||||
0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162, | ||||
1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889, | ||||
874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734, | ||||
724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626, | ||||
618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542, | ||||
535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473, | ||||
468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415, | ||||
411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366, | ||||
362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322, | ||||
318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282, | ||||
279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247, | ||||
244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215, | ||||
212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185, | ||||
182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157, | ||||
155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132, | ||||
130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108, | ||||
106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85, | ||||
83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64, | ||||
62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44, | ||||
42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25, | ||||
23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7, | ||||
5, 4, 2, 1, | ||||
}; | ||||
static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) { | ||||
void const* ptr = ctable; | ||||
U16 const* u16ptr = (U16 const*)ptr; | ||||
U32 const maxSymbolValue = MEM_read16(u16ptr + 1); | ||||
return maxSymbolValue; | ||||
} | ||||
/** | ||||
* Returns the cost in bytes of encoding the normalized count header. | ||||
* Returns an error if any of the helper functions return an error. | ||||
*/ | ||||
static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max, | ||||
size_t const nbSeq, unsigned const FSELog) | ||||
{ | ||||
BYTE wksp[FSE_NCOUNTBOUND]; | ||||
S16 norm[MaxSeq + 1]; | ||||
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); | ||||
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max)); | ||||
return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog); | ||||
} | ||||
/** | ||||
* Returns the cost in bits of encoding the distribution described by count | ||||
* using the entropy bound. | ||||
*/ | ||||
static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total) | ||||
{ | ||||
unsigned cost = 0; | ||||
unsigned s; | ||||
for (s = 0; s <= max; ++s) { | ||||
unsigned norm = (unsigned)((256 * count[s]) / total); | ||||
if (count[s] != 0 && norm == 0) | ||||
norm = 1; | ||||
assert(count[s] < total); | ||||
cost += count[s] * kInverseProbabilityLog256[norm]; | ||||
} | ||||
return cost >> 8; | ||||
} | ||||
/** | ||||
* Returns the cost in bits of encoding the distribution in count using ctable. | ||||
* Returns an error if ctable cannot represent all the symbols in count. | ||||
*/ | ||||
static size_t ZSTD_fseBitCost( | ||||
FSE_CTable const* ctable, | ||||
unsigned const* count, | ||||
unsigned const max) | ||||
{ | ||||
unsigned const kAccuracyLog = 8; | ||||
size_t cost = 0; | ||||
unsigned s; | ||||
FSE_CState_t cstate; | ||||
FSE_initCState(&cstate, ctable); | ||||
RETURN_ERROR_IF(ZSTD_getFSEMaxSymbolValue(ctable) < max, GENERIC, | ||||
"Repeat FSE_CTable has maxSymbolValue %u < %u", | ||||
ZSTD_getFSEMaxSymbolValue(ctable), max); | ||||
for (s = 0; s <= max; ++s) { | ||||
unsigned const tableLog = cstate.stateLog; | ||||
unsigned const badCost = (tableLog + 1) << kAccuracyLog; | ||||
unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog); | ||||
if (count[s] == 0) | ||||
continue; | ||||
RETURN_ERROR_IF(bitCost >= badCost, GENERIC, | ||||
"Repeat FSE_CTable has Prob[%u] == 0", s); | ||||
cost += count[s] * bitCost; | ||||
} | ||||
return cost >> kAccuracyLog; | ||||
} | ||||
/** | ||||
* Returns the cost in bits of encoding the distribution in count using the | ||||
* table described by norm. The max symbol support by norm is assumed >= max. | ||||
* norm must be valid for every symbol with non-zero probability in count. | ||||
*/ | ||||
static size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog, | ||||
unsigned const* count, unsigned const max) | ||||
{ | ||||
unsigned const shift = 8 - accuracyLog; | ||||
size_t cost = 0; | ||||
unsigned s; | ||||
assert(accuracyLog <= 8); | ||||
for (s = 0; s <= max; ++s) { | ||||
unsigned const normAcc = norm[s] != -1 ? norm[s] : 1; | ||||
unsigned const norm256 = normAcc << shift; | ||||
assert(norm256 > 0); | ||||
assert(norm256 < 256); | ||||
cost += count[s] * kInverseProbabilityLog256[norm256]; | ||||
} | ||||
return cost >> 8; | ||||
} | ||||
symbolEncodingType_e | ||||
ZSTD_selectEncodingType( | ||||
FSE_repeat* repeatMode, unsigned const* count, unsigned const max, | ||||
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog, | ||||
FSE_CTable const* prevCTable, | ||||
short const* defaultNorm, U32 defaultNormLog, | ||||
ZSTD_defaultPolicy_e const isDefaultAllowed, | ||||
ZSTD_strategy const strategy) | ||||
{ | ||||
ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0); | ||||
if (mostFrequent == nbSeq) { | ||||
*repeatMode = FSE_repeat_none; | ||||
if (isDefaultAllowed && nbSeq <= 2) { | ||||
/* Prefer set_basic over set_rle when there are 2 or less symbols, | ||||
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol. | ||||
* If basic encoding isn't possible, always choose RLE. | ||||
*/ | ||||
DEBUGLOG(5, "Selected set_basic"); | ||||
return set_basic; | ||||
} | ||||
DEBUGLOG(5, "Selected set_rle"); | ||||
return set_rle; | ||||
} | ||||
if (strategy < ZSTD_lazy) { | ||||
if (isDefaultAllowed) { | ||||
size_t const staticFse_nbSeq_max = 1000; | ||||
size_t const mult = 10 - strategy; | ||||
size_t const baseLog = 3; | ||||
size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */ | ||||
assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */ | ||||
assert(mult <= 9 && mult >= 7); | ||||
if ( (*repeatMode == FSE_repeat_valid) | ||||
&& (nbSeq < staticFse_nbSeq_max) ) { | ||||
DEBUGLOG(5, "Selected set_repeat"); | ||||
return set_repeat; | ||||
} | ||||
if ( (nbSeq < dynamicFse_nbSeq_min) | ||||
|| (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) { | ||||
DEBUGLOG(5, "Selected set_basic"); | ||||
/* The format allows default tables to be repeated, but it isn't useful. | ||||
* When using simple heuristics to select encoding type, we don't want | ||||
* to confuse these tables with dictionaries. When running more careful | ||||
* analysis, we don't need to waste time checking both repeating tables | ||||
* and default tables. | ||||
*/ | ||||
*repeatMode = FSE_repeat_none; | ||||
return set_basic; | ||||
} | ||||
} | ||||
} else { | ||||
size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC); | ||||
size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC); | ||||
size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog); | ||||
size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq); | ||||
if (isDefaultAllowed) { | ||||
assert(!ZSTD_isError(basicCost)); | ||||
assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost))); | ||||
} | ||||
assert(!ZSTD_isError(NCountCost)); | ||||
assert(compressedCost < ERROR(maxCode)); | ||||
DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u", | ||||
(unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost); | ||||
if (basicCost <= repeatCost && basicCost <= compressedCost) { | ||||
DEBUGLOG(5, "Selected set_basic"); | ||||
assert(isDefaultAllowed); | ||||
*repeatMode = FSE_repeat_none; | ||||
return set_basic; | ||||
} | ||||
if (repeatCost <= compressedCost) { | ||||
DEBUGLOG(5, "Selected set_repeat"); | ||||
assert(!ZSTD_isError(repeatCost)); | ||||
return set_repeat; | ||||
} | ||||
assert(compressedCost < basicCost && compressedCost < repeatCost); | ||||
} | ||||
DEBUGLOG(5, "Selected set_compressed"); | ||||
*repeatMode = FSE_repeat_check; | ||||
return set_compressed; | ||||
} | ||||
size_t | ||||
ZSTD_buildCTable(void* dst, size_t dstCapacity, | ||||
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type, | ||||
unsigned* count, U32 max, | ||||
const BYTE* codeTable, size_t nbSeq, | ||||
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax, | ||||
const FSE_CTable* prevCTable, size_t prevCTableSize, | ||||
void* workspace, size_t workspaceSize) | ||||
{ | ||||
BYTE* op = (BYTE*)dst; | ||||
const BYTE* const oend = op + dstCapacity; | ||||
DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity); | ||||
switch (type) { | ||||
case set_rle: | ||||
FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max)); | ||||
RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall); | ||||
*op = codeTable[0]; | ||||
return 1; | ||||
case set_repeat: | ||||
memcpy(nextCTable, prevCTable, prevCTableSize); | ||||
return 0; | ||||
case set_basic: | ||||
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, workspace, workspaceSize)); /* note : could be pre-calculated */ | ||||
return 0; | ||||
case set_compressed: { | ||||
S16 norm[MaxSeq + 1]; | ||||
size_t nbSeq_1 = nbSeq; | ||||
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); | ||||
if (count[codeTable[nbSeq-1]] > 1) { | ||||
count[codeTable[nbSeq-1]]--; | ||||
nbSeq_1--; | ||||
} | ||||
assert(nbSeq_1 > 1); | ||||
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max)); | ||||
{ size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */ | ||||
FORWARD_IF_ERROR(NCountSize); | ||||
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, workspace, workspaceSize)); | ||||
return NCountSize; | ||||
} | ||||
} | ||||
default: assert(0); RETURN_ERROR(GENERIC); | ||||
} | ||||
} | ||||
FORCE_INLINE_TEMPLATE size_t | ||||
ZSTD_encodeSequences_body( | ||||
void* dst, size_t dstCapacity, | ||||
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, | ||||
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, | ||||
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, | ||||
seqDef const* sequences, size_t nbSeq, int longOffsets) | ||||
{ | ||||
BIT_CStream_t blockStream; | ||||
FSE_CState_t stateMatchLength; | ||||
FSE_CState_t stateOffsetBits; | ||||
FSE_CState_t stateLitLength; | ||||
RETURN_ERROR_IF( | ||||
ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)), | ||||
dstSize_tooSmall, "not enough space remaining"); | ||||
DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)", | ||||
(int)(blockStream.endPtr - blockStream.startPtr), | ||||
(unsigned)dstCapacity); | ||||
/* first symbols */ | ||||
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]); | ||||
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]); | ||||
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]); | ||||
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]); | ||||
if (MEM_32bits()) BIT_flushBits(&blockStream); | ||||
BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]); | ||||
if (MEM_32bits()) BIT_flushBits(&blockStream); | ||||
if (longOffsets) { | ||||
U32 const ofBits = ofCodeTable[nbSeq-1]; | ||||
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); | ||||
if (extraBits) { | ||||
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits); | ||||
BIT_flushBits(&blockStream); | ||||
} | ||||
BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits, | ||||
ofBits - extraBits); | ||||
} else { | ||||
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]); | ||||
} | ||||
BIT_flushBits(&blockStream); | ||||
{ size_t n; | ||||
for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */ | ||||
BYTE const llCode = llCodeTable[n]; | ||||
BYTE const ofCode = ofCodeTable[n]; | ||||
BYTE const mlCode = mlCodeTable[n]; | ||||
U32 const llBits = LL_bits[llCode]; | ||||
U32 const ofBits = ofCode; | ||||
U32 const mlBits = ML_bits[mlCode]; | ||||
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u", | ||||
(unsigned)sequences[n].litLength, | ||||
(unsigned)sequences[n].matchLength + MINMATCH, | ||||
(unsigned)sequences[n].offset); | ||||
/* 32b*/ /* 64b*/ | ||||
/* (7)*/ /* (7)*/ | ||||
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */ | ||||
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */ | ||||
if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/ | ||||
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */ | ||||
if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog))) | ||||
BIT_flushBits(&blockStream); /* (7)*/ | ||||
BIT_addBits(&blockStream, sequences[n].litLength, llBits); | ||||
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream); | ||||
BIT_addBits(&blockStream, sequences[n].matchLength, mlBits); | ||||
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream); | ||||
if (longOffsets) { | ||||
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); | ||||
if (extraBits) { | ||||
BIT_addBits(&blockStream, sequences[n].offset, extraBits); | ||||
BIT_flushBits(&blockStream); /* (7)*/ | ||||
} | ||||
BIT_addBits(&blockStream, sequences[n].offset >> extraBits, | ||||
ofBits - extraBits); /* 31 */ | ||||
} else { | ||||
BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */ | ||||
} | ||||
BIT_flushBits(&blockStream); /* (7)*/ | ||||
DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr)); | ||||
} } | ||||
DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog); | ||||
FSE_flushCState(&blockStream, &stateMatchLength); | ||||
DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog); | ||||
FSE_flushCState(&blockStream, &stateOffsetBits); | ||||
DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog); | ||||
FSE_flushCState(&blockStream, &stateLitLength); | ||||
{ size_t const streamSize = BIT_closeCStream(&blockStream); | ||||
RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space"); | ||||
return streamSize; | ||||
} | ||||
} | ||||
static size_t | ||||
ZSTD_encodeSequences_default( | ||||
void* dst, size_t dstCapacity, | ||||
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, | ||||
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, | ||||
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, | ||||
seqDef const* sequences, size_t nbSeq, int longOffsets) | ||||
{ | ||||
return ZSTD_encodeSequences_body(dst, dstCapacity, | ||||
CTable_MatchLength, mlCodeTable, | ||||
CTable_OffsetBits, ofCodeTable, | ||||
CTable_LitLength, llCodeTable, | ||||
sequences, nbSeq, longOffsets); | ||||
} | ||||
#if DYNAMIC_BMI2 | ||||
static TARGET_ATTRIBUTE("bmi2") size_t | ||||
ZSTD_encodeSequences_bmi2( | ||||
void* dst, size_t dstCapacity, | ||||
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, | ||||
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, | ||||
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, | ||||
seqDef const* sequences, size_t nbSeq, int longOffsets) | ||||
{ | ||||
return ZSTD_encodeSequences_body(dst, dstCapacity, | ||||
CTable_MatchLength, mlCodeTable, | ||||
CTable_OffsetBits, ofCodeTable, | ||||
CTable_LitLength, llCodeTable, | ||||
sequences, nbSeq, longOffsets); | ||||
} | ||||
#endif | ||||
size_t ZSTD_encodeSequences( | ||||
void* dst, size_t dstCapacity, | ||||
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, | ||||
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, | ||||
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, | ||||
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2) | ||||
{ | ||||
DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity); | ||||
#if DYNAMIC_BMI2 | ||||
if (bmi2) { | ||||
return ZSTD_encodeSequences_bmi2(dst, dstCapacity, | ||||
CTable_MatchLength, mlCodeTable, | ||||
CTable_OffsetBits, ofCodeTable, | ||||
CTable_LitLength, llCodeTable, | ||||
sequences, nbSeq, longOffsets); | ||||
} | ||||
#endif | ||||
(void)bmi2; | ||||
return ZSTD_encodeSequences_default(dst, dstCapacity, | ||||
CTable_MatchLength, mlCodeTable, | ||||
CTable_OffsetBits, ofCodeTable, | ||||
CTable_LitLength, llCodeTable, | ||||
sequences, nbSeq, longOffsets); | ||||
} | ||||