zdict.c
1010 lines
| 37.3 KiB
| text/x-c
|
CLexer
Gregory Szorc
|
r30434 | /** | ||
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc. | ||||
* All rights reserved. | ||||
* | ||||
* This source code is licensed under the BSD-style license found in the | ||||
* LICENSE file in the root directory of this source tree. An additional grant | ||||
* of patent rights can be found in the PATENTS file in the same directory. | ||||
*/ | ||||
/*-************************************** | ||||
* Tuning parameters | ||||
****************************************/ | ||||
#define ZDICT_MAX_SAMPLES_SIZE (2000U << 20) | ||||
#define ZDICT_MIN_SAMPLES_SIZE 512 | ||||
/*-************************************** | ||||
* Compiler Options | ||||
****************************************/ | ||||
/* Unix Large Files support (>4GB) */ | ||||
#define _FILE_OFFSET_BITS 64 | ||||
#if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */ | ||||
# define _LARGEFILE_SOURCE | ||||
#elif ! defined(__LP64__) /* No point defining Large file for 64 bit */ | ||||
# define _LARGEFILE64_SOURCE | ||||
#endif | ||||
/*-************************************* | ||||
* Dependencies | ||||
***************************************/ | ||||
#include <stdlib.h> /* malloc, free */ | ||||
#include <string.h> /* memset */ | ||||
#include <stdio.h> /* fprintf, fopen, ftello64 */ | ||||
#include <time.h> /* clock */ | ||||
#include "mem.h" /* read */ | ||||
#include "error_private.h" | ||||
#include "fse.h" /* FSE_normalizeCount, FSE_writeNCount */ | ||||
#define HUF_STATIC_LINKING_ONLY | ||||
#include "huf.h" | ||||
#include "zstd_internal.h" /* includes zstd.h */ | ||||
#include "xxhash.h" | ||||
#include "divsufsort.h" | ||||
#ifndef ZDICT_STATIC_LINKING_ONLY | ||||
# define ZDICT_STATIC_LINKING_ONLY | ||||
#endif | ||||
#include "zdict.h" | ||||
/*-************************************* | ||||
* Constants | ||||
***************************************/ | ||||
#define KB *(1 <<10) | ||||
#define MB *(1 <<20) | ||||
#define GB *(1U<<30) | ||||
#define DICTLISTSIZE_DEFAULT 10000 | ||||
#define NOISELENGTH 32 | ||||
#define MINRATIO 4 | ||||
static const int g_compressionLevel_default = 5; | ||||
static const U32 g_selectivity_default = 9; | ||||
static const size_t g_provision_entropySize = 200; | ||||
static const size_t g_min_fast_dictContent = 192; | ||||
/*-************************************* | ||||
* Console display | ||||
***************************************/ | ||||
#define DISPLAY(...) { fprintf(stderr, __VA_ARGS__); fflush( stderr ); } | ||||
#define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */ | ||||
static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; } | ||||
static void ZDICT_printHex(const void* ptr, size_t length) | ||||
{ | ||||
const BYTE* const b = (const BYTE*)ptr; | ||||
size_t u; | ||||
for (u=0; u<length; u++) { | ||||
BYTE c = b[u]; | ||||
if (c<32 || c>126) c = '.'; /* non-printable char */ | ||||
DISPLAY("%c", c); | ||||
} | ||||
} | ||||
/*-******************************************************** | ||||
* Helper functions | ||||
**********************************************************/ | ||||
unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); } | ||||
const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); } | ||||
unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize) | ||||
{ | ||||
if (dictSize < 8) return 0; | ||||
if (MEM_readLE32(dictBuffer) != ZSTD_DICT_MAGIC) return 0; | ||||
return MEM_readLE32((const char*)dictBuffer + 4); | ||||
} | ||||
/*-******************************************************** | ||||
* Dictionary training functions | ||||
**********************************************************/ | ||||
static unsigned ZDICT_NbCommonBytes (register size_t val) | ||||
{ | ||||
if (MEM_isLittleEndian()) { | ||||
if (MEM_64bits()) { | ||||
# if defined(_MSC_VER) && defined(_WIN64) | ||||
unsigned long r = 0; | ||||
_BitScanForward64( &r, (U64)val ); | ||||
return (unsigned)(r>>3); | ||||
# elif defined(__GNUC__) && (__GNUC__ >= 3) | ||||
return (__builtin_ctzll((U64)val) >> 3); | ||||
# else | ||||
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 }; | ||||
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58]; | ||||
# endif | ||||
} else { /* 32 bits */ | ||||
# if defined(_MSC_VER) | ||||
unsigned long r=0; | ||||
_BitScanForward( &r, (U32)val ); | ||||
return (unsigned)(r>>3); | ||||
# elif defined(__GNUC__) && (__GNUC__ >= 3) | ||||
return (__builtin_ctz((U32)val) >> 3); | ||||
# else | ||||
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 }; | ||||
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27]; | ||||
# endif | ||||
} | ||||
} else { /* Big Endian CPU */ | ||||
if (MEM_64bits()) { | ||||
# if defined(_MSC_VER) && defined(_WIN64) | ||||
unsigned long r = 0; | ||||
_BitScanReverse64( &r, val ); | ||||
return (unsigned)(r>>3); | ||||
# elif defined(__GNUC__) && (__GNUC__ >= 3) | ||||
return (__builtin_clzll(val) >> 3); | ||||
# else | ||||
unsigned r; | ||||
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */ | ||||
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; } | ||||
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; } | ||||
r += (!val); | ||||
return r; | ||||
# endif | ||||
} else { /* 32 bits */ | ||||
# if defined(_MSC_VER) | ||||
unsigned long r = 0; | ||||
_BitScanReverse( &r, (unsigned long)val ); | ||||
return (unsigned)(r>>3); | ||||
# elif defined(__GNUC__) && (__GNUC__ >= 3) | ||||
return (__builtin_clz((U32)val) >> 3); | ||||
# else | ||||
unsigned r; | ||||
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; } | ||||
r += (!val); | ||||
return r; | ||||
# endif | ||||
} } | ||||
} | ||||
/*! ZDICT_count() : | ||||
Count the nb of common bytes between 2 pointers. | ||||
Note : this function presumes end of buffer followed by noisy guard band. | ||||
*/ | ||||
static size_t ZDICT_count(const void* pIn, const void* pMatch) | ||||
{ | ||||
const char* const pStart = (const char*)pIn; | ||||
for (;;) { | ||||
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); | ||||
if (!diff) { | ||||
pIn = (const char*)pIn+sizeof(size_t); | ||||
pMatch = (const char*)pMatch+sizeof(size_t); | ||||
continue; | ||||
} | ||||
pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff); | ||||
return (size_t)((const char*)pIn - pStart); | ||||
} | ||||
} | ||||
typedef struct { | ||||
U32 pos; | ||||
U32 length; | ||||
U32 savings; | ||||
} dictItem; | ||||
static void ZDICT_initDictItem(dictItem* d) | ||||
{ | ||||
d->pos = 1; | ||||
d->length = 0; | ||||
d->savings = (U32)(-1); | ||||
} | ||||
#define LLIMIT 64 /* heuristic determined experimentally */ | ||||
#define MINMATCHLENGTH 7 /* heuristic determined experimentally */ | ||||
static dictItem ZDICT_analyzePos( | ||||
BYTE* doneMarks, | ||||
const int* suffix, U32 start, | ||||
const void* buffer, U32 minRatio, U32 notificationLevel) | ||||
{ | ||||
U32 lengthList[LLIMIT] = {0}; | ||||
U32 cumulLength[LLIMIT] = {0}; | ||||
U32 savings[LLIMIT] = {0}; | ||||
const BYTE* b = (const BYTE*)buffer; | ||||
size_t length; | ||||
size_t maxLength = LLIMIT; | ||||
size_t pos = suffix[start]; | ||||
U32 end = start; | ||||
dictItem solution; | ||||
/* init */ | ||||
memset(&solution, 0, sizeof(solution)); | ||||
doneMarks[pos] = 1; | ||||
/* trivial repetition cases */ | ||||
if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2)) | ||||
||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3)) | ||||
||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) { | ||||
/* skip and mark segment */ | ||||
U16 u16 = MEM_read16(b+pos+4); | ||||
U32 u, e = 6; | ||||
while (MEM_read16(b+pos+e) == u16) e+=2 ; | ||||
if (b[pos+e] == b[pos+e-1]) e++; | ||||
for (u=1; u<e; u++) | ||||
doneMarks[pos+u] = 1; | ||||
return solution; | ||||
} | ||||
/* look forward */ | ||||
do { | ||||
end++; | ||||
length = ZDICT_count(b + pos, b + suffix[end]); | ||||
} while (length >=MINMATCHLENGTH); | ||||
/* look backward */ | ||||
do { | ||||
length = ZDICT_count(b + pos, b + *(suffix+start-1)); | ||||
if (length >=MINMATCHLENGTH) start--; | ||||
} while(length >= MINMATCHLENGTH); | ||||
/* exit if not found a minimum nb of repetitions */ | ||||
if (end-start < minRatio) { | ||||
U32 idx; | ||||
for(idx=start; idx<end; idx++) | ||||
doneMarks[suffix[idx]] = 1; | ||||
return solution; | ||||
} | ||||
{ int i; | ||||
U32 searchLength; | ||||
U32 refinedStart = start; | ||||
U32 refinedEnd = end; | ||||
DISPLAYLEVEL(4, "\n"); | ||||
DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u ", (U32)(end-start), MINMATCHLENGTH, (U32)pos); | ||||
DISPLAYLEVEL(4, "\n"); | ||||
for (searchLength = MINMATCHLENGTH ; ; searchLength++) { | ||||
BYTE currentChar = 0; | ||||
U32 currentCount = 0; | ||||
U32 currentID = refinedStart; | ||||
U32 id; | ||||
U32 selectedCount = 0; | ||||
U32 selectedID = currentID; | ||||
for (id =refinedStart; id < refinedEnd; id++) { | ||||
if (b[ suffix[id] + searchLength] != currentChar) { | ||||
if (currentCount > selectedCount) { | ||||
selectedCount = currentCount; | ||||
selectedID = currentID; | ||||
} | ||||
currentID = id; | ||||
currentChar = b[ suffix[id] + searchLength]; | ||||
currentCount = 0; | ||||
} | ||||
currentCount ++; | ||||
} | ||||
if (currentCount > selectedCount) { /* for last */ | ||||
selectedCount = currentCount; | ||||
selectedID = currentID; | ||||
} | ||||
if (selectedCount < minRatio) | ||||
break; | ||||
refinedStart = selectedID; | ||||
refinedEnd = refinedStart + selectedCount; | ||||
} | ||||
/* evaluate gain based on new ref */ | ||||
start = refinedStart; | ||||
pos = suffix[refinedStart]; | ||||
end = start; | ||||
memset(lengthList, 0, sizeof(lengthList)); | ||||
/* look forward */ | ||||
do { | ||||
end++; | ||||
length = ZDICT_count(b + pos, b + suffix[end]); | ||||
if (length >= LLIMIT) length = LLIMIT-1; | ||||
lengthList[length]++; | ||||
} while (length >=MINMATCHLENGTH); | ||||
/* look backward */ | ||||
length = MINMATCHLENGTH; | ||||
while ((length >= MINMATCHLENGTH) & (start > 0)) { | ||||
length = ZDICT_count(b + pos, b + suffix[start - 1]); | ||||
if (length >= LLIMIT) length = LLIMIT - 1; | ||||
lengthList[length]++; | ||||
if (length >= MINMATCHLENGTH) start--; | ||||
} | ||||
/* largest useful length */ | ||||
memset(cumulLength, 0, sizeof(cumulLength)); | ||||
cumulLength[maxLength-1] = lengthList[maxLength-1]; | ||||
for (i=(int)(maxLength-2); i>=0; i--) | ||||
cumulLength[i] = cumulLength[i+1] + lengthList[i]; | ||||
for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break; | ||||
maxLength = i; | ||||
/* reduce maxLength in case of final into repetitive data */ | ||||
{ U32 l = (U32)maxLength; | ||||
BYTE const c = b[pos + maxLength-1]; | ||||
while (b[pos+l-2]==c) l--; | ||||
maxLength = l; | ||||
} | ||||
if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */ | ||||
/* calculate savings */ | ||||
savings[5] = 0; | ||||
for (i=MINMATCHLENGTH; i<=(int)maxLength; i++) | ||||
savings[i] = savings[i-1] + (lengthList[i] * (i-3)); | ||||
DISPLAYLEVEL(4, "Selected ref at position %u, of length %u : saves %u (ratio: %.2f) \n", | ||||
(U32)pos, (U32)maxLength, savings[maxLength], (double)savings[maxLength] / maxLength); | ||||
solution.pos = (U32)pos; | ||||
solution.length = (U32)maxLength; | ||||
solution.savings = savings[maxLength]; | ||||
/* mark positions done */ | ||||
{ U32 id; | ||||
for (id=start; id<end; id++) { | ||||
U32 p, pEnd; | ||||
U32 const testedPos = suffix[id]; | ||||
if (testedPos == pos) | ||||
length = solution.length; | ||||
else { | ||||
length = ZDICT_count(b+pos, b+testedPos); | ||||
if (length > solution.length) length = solution.length; | ||||
} | ||||
pEnd = (U32)(testedPos + length); | ||||
for (p=testedPos; p<pEnd; p++) | ||||
doneMarks[p] = 1; | ||||
} } } | ||||
return solution; | ||||
} | ||||
/*! ZDICT_checkMerge | ||||
check if dictItem can be merged, do it if possible | ||||
@return : id of destination elt, 0 if not merged | ||||
*/ | ||||
static U32 ZDICT_checkMerge(dictItem* table, dictItem elt, U32 eltNbToSkip) | ||||
{ | ||||
const U32 tableSize = table->pos; | ||||
const U32 eltEnd = elt.pos + elt.length; | ||||
/* tail overlap */ | ||||
U32 u; for (u=1; u<tableSize; u++) { | ||||
if (u==eltNbToSkip) continue; | ||||
if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) { /* overlap, existing > new */ | ||||
/* append */ | ||||
U32 addedLength = table[u].pos - elt.pos; | ||||
table[u].length += addedLength; | ||||
table[u].pos = elt.pos; | ||||
table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */ | ||||
table[u].savings += elt.length / 8; /* rough approx bonus */ | ||||
elt = table[u]; | ||||
/* sort : improve rank */ | ||||
while ((u>1) && (table[u-1].savings < elt.savings)) | ||||
table[u] = table[u-1], u--; | ||||
table[u] = elt; | ||||
return u; | ||||
} } | ||||
/* front overlap */ | ||||
for (u=1; u<tableSize; u++) { | ||||
if (u==eltNbToSkip) continue; | ||||
if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) { /* overlap, existing < new */ | ||||
/* append */ | ||||
int addedLength = (int)eltEnd - (table[u].pos + table[u].length); | ||||
table[u].savings += elt.length / 8; /* rough approx bonus */ | ||||
if (addedLength > 0) { /* otherwise, elt fully included into existing */ | ||||
table[u].length += addedLength; | ||||
table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */ | ||||
} | ||||
/* sort : improve rank */ | ||||
elt = table[u]; | ||||
while ((u>1) && (table[u-1].savings < elt.savings)) | ||||
table[u] = table[u-1], u--; | ||||
table[u] = elt; | ||||
return u; | ||||
} } | ||||
return 0; | ||||
} | ||||
static void ZDICT_removeDictItem(dictItem* table, U32 id) | ||||
{ | ||||
/* convention : first element is nb of elts */ | ||||
U32 const max = table->pos; | ||||
U32 u; | ||||
if (!id) return; /* protection, should never happen */ | ||||
for (u=id; u<max-1; u++) | ||||
table[u] = table[u+1]; | ||||
table->pos--; | ||||
} | ||||
static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt) | ||||
{ | ||||
/* merge if possible */ | ||||
U32 mergeId = ZDICT_checkMerge(table, elt, 0); | ||||
if (mergeId) { | ||||
U32 newMerge = 1; | ||||
while (newMerge) { | ||||
newMerge = ZDICT_checkMerge(table, table[mergeId], mergeId); | ||||
if (newMerge) ZDICT_removeDictItem(table, mergeId); | ||||
mergeId = newMerge; | ||||
} | ||||
return; | ||||
} | ||||
/* insert */ | ||||
{ U32 current; | ||||
U32 nextElt = table->pos; | ||||
if (nextElt >= maxSize) nextElt = maxSize-1; | ||||
current = nextElt-1; | ||||
while (table[current].savings < elt.savings) { | ||||
table[current+1] = table[current]; | ||||
current--; | ||||
} | ||||
table[current+1] = elt; | ||||
table->pos = nextElt+1; | ||||
} | ||||
} | ||||
static U32 ZDICT_dictSize(const dictItem* dictList) | ||||
{ | ||||
U32 u, dictSize = 0; | ||||
for (u=1; u<dictList[0].pos; u++) | ||||
dictSize += dictList[u].length; | ||||
return dictSize; | ||||
} | ||||
static size_t ZDICT_trainBuffer(dictItem* dictList, U32 dictListSize, | ||||
const void* const buffer, size_t bufferSize, /* buffer must end with noisy guard band */ | ||||
const size_t* fileSizes, unsigned nbFiles, | ||||
U32 minRatio, U32 notificationLevel) | ||||
{ | ||||
int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0)); | ||||
int* const suffix = suffix0+1; | ||||
U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix)); | ||||
BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks)); /* +16 for overflow security */ | ||||
U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos)); | ||||
size_t result = 0; | ||||
clock_t displayClock = 0; | ||||
clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10; | ||||
# define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \ | ||||
if (ZDICT_clockSpan(displayClock) > refreshRate) \ | ||||
{ displayClock = clock(); DISPLAY(__VA_ARGS__); \ | ||||
if (notificationLevel>=4) fflush(stdout); } } | ||||
/* init */ | ||||
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ | ||||
if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) { | ||||
result = ERROR(memory_allocation); | ||||
goto _cleanup; | ||||
} | ||||
if (minRatio < MINRATIO) minRatio = MINRATIO; | ||||
memset(doneMarks, 0, bufferSize+16); | ||||
/* limit sample set size (divsufsort limitation)*/ | ||||
if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (U32)(ZDICT_MAX_SAMPLES_SIZE>>20)); | ||||
while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles]; | ||||
/* sort */ | ||||
DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (U32)(bufferSize>>20)); | ||||
{ int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0); | ||||
if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; } | ||||
} | ||||
suffix[bufferSize] = (int)bufferSize; /* leads into noise */ | ||||
suffix0[0] = (int)bufferSize; /* leads into noise */ | ||||
/* build reverse suffix sort */ | ||||
{ size_t pos; | ||||
for (pos=0; pos < bufferSize; pos++) | ||||
reverseSuffix[suffix[pos]] = (U32)pos; | ||||
/* note filePos tracks borders between samples. | ||||
It's not used at this stage, but planned to become useful in a later update */ | ||||
filePos[0] = 0; | ||||
for (pos=1; pos<nbFiles; pos++) | ||||
filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]); | ||||
} | ||||
DISPLAYLEVEL(2, "finding patterns ... \n"); | ||||
DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio); | ||||
{ U32 cursor; for (cursor=0; cursor < bufferSize; ) { | ||||
dictItem solution; | ||||
if (doneMarks[cursor]) { cursor++; continue; } | ||||
solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel); | ||||
if (solution.length==0) { cursor++; continue; } | ||||
ZDICT_insertDictItem(dictList, dictListSize, solution); | ||||
cursor += solution.length; | ||||
DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100); | ||||
} } | ||||
_cleanup: | ||||
free(suffix0); | ||||
free(reverseSuffix); | ||||
free(doneMarks); | ||||
free(filePos); | ||||
return result; | ||||
} | ||||
static void ZDICT_fillNoise(void* buffer, size_t length) | ||||
{ | ||||
unsigned const prime1 = 2654435761U; | ||||
unsigned const prime2 = 2246822519U; | ||||
unsigned acc = prime1; | ||||
size_t p=0;; | ||||
for (p=0; p<length; p++) { | ||||
acc *= prime2; | ||||
((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21); | ||||
} | ||||
} | ||||
typedef struct | ||||
{ | ||||
ZSTD_CCtx* ref; | ||||
ZSTD_CCtx* zc; | ||||
void* workPlace; /* must be ZSTD_BLOCKSIZE_ABSOLUTEMAX allocated */ | ||||
} EStats_ress_t; | ||||
#define MAXREPOFFSET 1024 | ||||
static void ZDICT_countEStats(EStats_ress_t esr, ZSTD_parameters params, | ||||
U32* countLit, U32* offsetcodeCount, U32* matchlengthCount, U32* litlengthCount, U32* repOffsets, | ||||
const void* src, size_t srcSize, U32 notificationLevel) | ||||
{ | ||||
size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_ABSOLUTEMAX, 1 << params.cParams.windowLog); | ||||
size_t cSize; | ||||
if (srcSize > blockSizeMax) srcSize = blockSizeMax; /* protection vs large samples */ | ||||
{ size_t const errorCode = ZSTD_copyCCtx(esr.zc, esr.ref, 0); | ||||
if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_copyCCtx failed \n"); return; } | ||||
} | ||||
cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_ABSOLUTEMAX, src, srcSize); | ||||
if (ZSTD_isError(cSize)) { DISPLAYLEVEL(1, "warning : could not compress sample size %u \n", (U32)srcSize); return; } | ||||
if (cSize) { /* if == 0; block is not compressible */ | ||||
const seqStore_t* seqStorePtr = ZSTD_getSeqStore(esr.zc); | ||||
/* literals stats */ | ||||
{ const BYTE* bytePtr; | ||||
for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++) | ||||
countLit[*bytePtr]++; | ||||
} | ||||
/* seqStats */ | ||||
{ U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); | ||||
ZSTD_seqToCodes(seqStorePtr); | ||||
{ const BYTE* codePtr = seqStorePtr->ofCode; | ||||
U32 u; | ||||
for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++; | ||||
} | ||||
{ const BYTE* codePtr = seqStorePtr->mlCode; | ||||
U32 u; | ||||
for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++; | ||||
} | ||||
{ const BYTE* codePtr = seqStorePtr->llCode; | ||||
U32 u; | ||||
for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++; | ||||
} | ||||
if (nbSeq >= 2) { /* rep offsets */ | ||||
const seqDef* const seq = seqStorePtr->sequencesStart; | ||||
U32 offset1 = seq[0].offset - 3; | ||||
U32 offset2 = seq[1].offset - 3; | ||||
if (offset1 >= MAXREPOFFSET) offset1 = 0; | ||||
if (offset2 >= MAXREPOFFSET) offset2 = 0; | ||||
repOffsets[offset1] += 3; | ||||
repOffsets[offset2] += 1; | ||||
} } } | ||||
} | ||||
/* | ||||
static size_t ZDICT_maxSampleSize(const size_t* fileSizes, unsigned nbFiles) | ||||
{ | ||||
unsigned u; | ||||
size_t max=0; | ||||
for (u=0; u<nbFiles; u++) | ||||
if (max < fileSizes[u]) max = fileSizes[u]; | ||||
return max; | ||||
} | ||||
*/ | ||||
static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles) | ||||
{ | ||||
size_t total=0; | ||||
unsigned u; | ||||
for (u=0; u<nbFiles; u++) total += fileSizes[u]; | ||||
return total; | ||||
} | ||||
typedef struct { U32 offset; U32 count; } offsetCount_t; | ||||
static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count) | ||||
{ | ||||
U32 u; | ||||
table[ZSTD_REP_NUM].offset = val; | ||||
table[ZSTD_REP_NUM].count = count; | ||||
for (u=ZSTD_REP_NUM; u>0; u--) { | ||||
offsetCount_t tmp; | ||||
if (table[u-1].count >= table[u].count) break; | ||||
tmp = table[u-1]; | ||||
table[u-1] = table[u]; | ||||
table[u] = tmp; | ||||
} | ||||
} | ||||
#define OFFCODE_MAX 30 /* only applicable to first block */ | ||||
static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize, | ||||
unsigned compressionLevel, | ||||
const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles, | ||||
const void* dictBuffer, size_t dictBufferSize, | ||||
unsigned notificationLevel) | ||||
{ | ||||
U32 countLit[256]; | ||||
HUF_CREATE_STATIC_CTABLE(hufTable, 255); | ||||
U32 offcodeCount[OFFCODE_MAX+1]; | ||||
short offcodeNCount[OFFCODE_MAX+1]; | ||||
U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB)); | ||||
U32 matchLengthCount[MaxML+1]; | ||||
short matchLengthNCount[MaxML+1]; | ||||
U32 litLengthCount[MaxLL+1]; | ||||
short litLengthNCount[MaxLL+1]; | ||||
U32 repOffset[MAXREPOFFSET]; | ||||
offsetCount_t bestRepOffset[ZSTD_REP_NUM+1]; | ||||
EStats_ress_t esr; | ||||
ZSTD_parameters params; | ||||
U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total; | ||||
size_t pos = 0, errorCode; | ||||
size_t eSize = 0; | ||||
size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles); | ||||
size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles); | ||||
BYTE* dstPtr = (BYTE*)dstBuffer; | ||||
/* init */ | ||||
esr.ref = ZSTD_createCCtx(); | ||||
esr.zc = ZSTD_createCCtx(); | ||||
esr.workPlace = malloc(ZSTD_BLOCKSIZE_ABSOLUTEMAX); | ||||
if (!esr.ref || !esr.zc || !esr.workPlace) { | ||||
eSize = ERROR(memory_allocation); | ||||
DISPLAYLEVEL(1, "Not enough memory \n"); | ||||
goto _cleanup; | ||||
} | ||||
if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionary_wrong); goto _cleanup; } /* too large dictionary */ | ||||
for (u=0; u<256; u++) countLit[u]=1; /* any character must be described */ | ||||
for (u=0; u<=offcodeMax; u++) offcodeCount[u]=1; | ||||
for (u=0; u<=MaxML; u++) matchLengthCount[u]=1; | ||||
for (u=0; u<=MaxLL; u++) litLengthCount[u]=1; | ||||
memset(repOffset, 0, sizeof(repOffset)); | ||||
repOffset[1] = repOffset[4] = repOffset[8] = 1; | ||||
memset(bestRepOffset, 0, sizeof(bestRepOffset)); | ||||
if (compressionLevel==0) compressionLevel=g_compressionLevel_default; | ||||
params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize); | ||||
{ size_t const beginResult = ZSTD_compressBegin_advanced(esr.ref, dictBuffer, dictBufferSize, params, 0); | ||||
if (ZSTD_isError(beginResult)) { | ||||
eSize = ERROR(GENERIC); | ||||
DISPLAYLEVEL(1, "error : ZSTD_compressBegin_advanced failed \n"); | ||||
goto _cleanup; | ||||
} } | ||||
/* collect stats on all files */ | ||||
for (u=0; u<nbFiles; u++) { | ||||
ZDICT_countEStats(esr, params, | ||||
countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset, | ||||
(const char*)srcBuffer + pos, fileSizes[u], | ||||
notificationLevel); | ||||
pos += fileSizes[u]; | ||||
} | ||||
/* analyze */ | ||||
errorCode = HUF_buildCTable (hufTable, countLit, 255, huffLog); | ||||
if (HUF_isError(errorCode)) { | ||||
eSize = ERROR(GENERIC); | ||||
DISPLAYLEVEL(1, "HUF_buildCTable error \n"); | ||||
goto _cleanup; | ||||
} | ||||
huffLog = (U32)errorCode; | ||||
/* looking for most common first offsets */ | ||||
{ U32 offset; | ||||
for (offset=1; offset<MAXREPOFFSET; offset++) | ||||
ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]); | ||||
} | ||||
/* note : the result of this phase should be used to better appreciate the impact on statistics */ | ||||
total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u]; | ||||
errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax); | ||||
if (FSE_isError(errorCode)) { | ||||
eSize = ERROR(GENERIC); | ||||
DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n"); | ||||
goto _cleanup; | ||||
} | ||||
Offlog = (U32)errorCode; | ||||
total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u]; | ||||
errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML); | ||||
if (FSE_isError(errorCode)) { | ||||
eSize = ERROR(GENERIC); | ||||
DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n"); | ||||
goto _cleanup; | ||||
} | ||||
mlLog = (U32)errorCode; | ||||
total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u]; | ||||
errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL); | ||||
if (FSE_isError(errorCode)) { | ||||
eSize = ERROR(GENERIC); | ||||
DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n"); | ||||
goto _cleanup; | ||||
} | ||||
llLog = (U32)errorCode; | ||||
/* write result to buffer */ | ||||
{ size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog); | ||||
if (HUF_isError(hhSize)) { | ||||
eSize = ERROR(GENERIC); | ||||
DISPLAYLEVEL(1, "HUF_writeCTable error \n"); | ||||
goto _cleanup; | ||||
} | ||||
dstPtr += hhSize; | ||||
maxDstSize -= hhSize; | ||||
eSize += hhSize; | ||||
} | ||||
{ size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog); | ||||
if (FSE_isError(ohSize)) { | ||||
eSize = ERROR(GENERIC); | ||||
DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n"); | ||||
goto _cleanup; | ||||
} | ||||
dstPtr += ohSize; | ||||
maxDstSize -= ohSize; | ||||
eSize += ohSize; | ||||
} | ||||
{ size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog); | ||||
if (FSE_isError(mhSize)) { | ||||
eSize = ERROR(GENERIC); | ||||
DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n"); | ||||
goto _cleanup; | ||||
} | ||||
dstPtr += mhSize; | ||||
maxDstSize -= mhSize; | ||||
eSize += mhSize; | ||||
} | ||||
{ size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog); | ||||
if (FSE_isError(lhSize)) { | ||||
eSize = ERROR(GENERIC); | ||||
DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n"); | ||||
goto _cleanup; | ||||
} | ||||
dstPtr += lhSize; | ||||
maxDstSize -= lhSize; | ||||
eSize += lhSize; | ||||
} | ||||
if (maxDstSize<12) { | ||||
eSize = ERROR(GENERIC); | ||||
DISPLAYLEVEL(1, "not enough space to write RepOffsets \n"); | ||||
goto _cleanup; | ||||
} | ||||
# if 0 | ||||
MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset); | ||||
MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset); | ||||
MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset); | ||||
#else | ||||
/* at this stage, we don't use the result of "most common first offset", | ||||
as the impact of statistics is not properly evaluated */ | ||||
MEM_writeLE32(dstPtr+0, repStartValue[0]); | ||||
MEM_writeLE32(dstPtr+4, repStartValue[1]); | ||||
MEM_writeLE32(dstPtr+8, repStartValue[2]); | ||||
#endif | ||||
//dstPtr += 12; | ||||
eSize += 12; | ||||
_cleanup: | ||||
ZSTD_freeCCtx(esr.ref); | ||||
ZSTD_freeCCtx(esr.zc); | ||||
free(esr.workPlace); | ||||
return eSize; | ||||
} | ||||
size_t ZDICT_addEntropyTablesFromBuffer_advanced(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, | ||||
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, | ||||
ZDICT_params_t params) | ||||
{ | ||||
size_t hSize; | ||||
int const compressionLevel = (params.compressionLevel <= 0) ? g_compressionLevel_default : params.compressionLevel; | ||||
U32 const notificationLevel = params.notificationLevel; | ||||
/* dictionary header */ | ||||
MEM_writeLE32(dictBuffer, ZSTD_DICT_MAGIC); | ||||
{ U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0); | ||||
U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768; | ||||
U32 const dictID = params.dictID ? params.dictID : compliantID; | ||||
MEM_writeLE32((char*)dictBuffer+4, dictID); | ||||
} | ||||
hSize = 8; | ||||
/* entropy tables */ | ||||
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ | ||||
DISPLAYLEVEL(2, "statistics ... \n"); | ||||
{ size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize, | ||||
compressionLevel, | ||||
samplesBuffer, samplesSizes, nbSamples, | ||||
(char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, | ||||
notificationLevel); | ||||
if (ZDICT_isError(eSize)) return eSize; | ||||
hSize += eSize; | ||||
} | ||||
if (hSize + dictContentSize < dictBufferCapacity) | ||||
memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize); | ||||
return MIN(dictBufferCapacity, hSize+dictContentSize); | ||||
} | ||||
/*! ZDICT_trainFromBuffer_unsafe() : | ||||
* Warning : `samplesBuffer` must be followed by noisy guard band. | ||||
* @return : size of dictionary, or an error code which can be tested with ZDICT_isError() | ||||
*/ | ||||
size_t ZDICT_trainFromBuffer_unsafe( | ||||
void* dictBuffer, size_t maxDictSize, | ||||
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, | ||||
ZDICT_params_t params) | ||||
{ | ||||
U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16)); | ||||
dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList)); | ||||
unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel; | ||||
unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity; | ||||
size_t const targetDictSize = maxDictSize; | ||||
size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples); | ||||
size_t dictSize = 0; | ||||
U32 const notificationLevel = params.notificationLevel; | ||||
/* checks */ | ||||
if (!dictList) return ERROR(memory_allocation); | ||||
if (maxDictSize <= g_provision_entropySize + g_min_fast_dictContent) { free(dictList); return ERROR(dstSize_tooSmall); } | ||||
if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return 0; } /* not enough source to create dictionary */ | ||||
/* init */ | ||||
ZDICT_initDictItem(dictList); | ||||
/* build dictionary */ | ||||
ZDICT_trainBuffer(dictList, dictListSize, | ||||
samplesBuffer, samplesBuffSize, | ||||
samplesSizes, nbSamples, | ||||
minRep, notificationLevel); | ||||
/* display best matches */ | ||||
if (params.notificationLevel>= 3) { | ||||
U32 const nb = MIN(25, dictList[0].pos); | ||||
U32 const dictContentSize = ZDICT_dictSize(dictList); | ||||
U32 u; | ||||
DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", dictList[0].pos, dictContentSize); | ||||
DISPLAYLEVEL(3, "list %u best segments \n", nb); | ||||
for (u=1; u<=nb; u++) { | ||||
U32 pos = dictList[u].pos; | ||||
U32 length = dictList[u].length; | ||||
U32 printedLength = MIN(40, length); | ||||
DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |", | ||||
u, length, pos, dictList[u].savings); | ||||
ZDICT_printHex((const char*)samplesBuffer+pos, printedLength); | ||||
DISPLAYLEVEL(3, "| \n"); | ||||
} } | ||||
/* create dictionary */ | ||||
{ U32 dictContentSize = ZDICT_dictSize(dictList); | ||||
if (dictContentSize < targetDictSize/3) { | ||||
DISPLAYLEVEL(2, "! warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (U32)maxDictSize); | ||||
if (minRep > MINRATIO) { | ||||
DISPLAYLEVEL(2, "! consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1); | ||||
DISPLAYLEVEL(2, "! note : larger dictionaries are not necessarily better, test its efficiency on samples \n"); | ||||
} | ||||
if (samplesBuffSize < 10 * targetDictSize) | ||||
DISPLAYLEVEL(2, "! consider increasing the number of samples (total size : %u MB)\n", (U32)(samplesBuffSize>>20)); | ||||
} | ||||
if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) { | ||||
U32 proposedSelectivity = selectivity-1; | ||||
while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; } | ||||
DISPLAYLEVEL(2, "! note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (U32)maxDictSize); | ||||
DISPLAYLEVEL(2, "! consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity); | ||||
DISPLAYLEVEL(2, "! always test dictionary efficiency on samples \n"); | ||||
} | ||||
/* limit dictionary size */ | ||||
{ U32 const max = dictList->pos; /* convention : nb of useful elts within dictList */ | ||||
U32 currentSize = 0; | ||||
U32 n; for (n=1; n<max; n++) { | ||||
currentSize += dictList[n].length; | ||||
if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; } | ||||
} | ||||
dictList->pos = n; | ||||
dictContentSize = currentSize; | ||||
} | ||||
/* build dict content */ | ||||
{ U32 u; | ||||
BYTE* ptr = (BYTE*)dictBuffer + maxDictSize; | ||||
for (u=1; u<dictList->pos; u++) { | ||||
U32 l = dictList[u].length; | ||||
ptr -= l; | ||||
if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); } /* should not happen */ | ||||
memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l); | ||||
} } | ||||
dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize, | ||||
samplesBuffer, samplesSizes, nbSamples, | ||||
params); | ||||
} | ||||
/* clean up */ | ||||
free(dictList); | ||||
return dictSize; | ||||
} | ||||
/* issue : samplesBuffer need to be followed by a noisy guard band. | ||||
* work around : duplicate the buffer, and add the noise */ | ||||
size_t ZDICT_trainFromBuffer_advanced(void* dictBuffer, size_t dictBufferCapacity, | ||||
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, | ||||
ZDICT_params_t params) | ||||
{ | ||||
size_t result; | ||||
void* newBuff; | ||||
size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples); | ||||
if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0; /* not enough content => no dictionary */ | ||||
newBuff = malloc(sBuffSize + NOISELENGTH); | ||||
if (!newBuff) return ERROR(memory_allocation); | ||||
memcpy(newBuff, samplesBuffer, sBuffSize); | ||||
ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH); /* guard band, for end of buffer condition */ | ||||
result = ZDICT_trainFromBuffer_unsafe( | ||||
dictBuffer, dictBufferCapacity, | ||||
newBuff, samplesSizes, nbSamples, | ||||
params); | ||||
free(newBuff); | ||||
return result; | ||||
} | ||||
size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity, | ||||
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples) | ||||
{ | ||||
ZDICT_params_t params; | ||||
memset(¶ms, 0, sizeof(params)); | ||||
return ZDICT_trainFromBuffer_advanced(dictBuffer, dictBufferCapacity, | ||||
samplesBuffer, samplesSizes, nbSamples, | ||||
params); | ||||
} | ||||
size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, | ||||
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples) | ||||
{ | ||||
ZDICT_params_t params; | ||||
memset(¶ms, 0, sizeof(params)); | ||||
return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity, | ||||
samplesBuffer, samplesSizes, nbSamples, | ||||
params); | ||||
} | ||||