ancestor.py
83 lines
| 2.2 KiB
| text/x-python
|
PythonLexer
/ mercurial / ancestor.py
Matt Mackall
|
r3135 | # ancestor.py - generic DAG ancestor algorithm for mercurial | ||
# | ||||
# Copyright 2006 Matt Mackall <mpm@selenic.com> | ||||
# | ||||
# This software may be used and distributed according to the terms | ||||
# of the GNU General Public License, incorporated herein by reference. | ||||
import heapq | ||||
def ancestor(a, b, pfunc): | ||||
""" | ||||
return the least common ancestor of nodes a and b or None if there | ||||
is no such ancestor. | ||||
pfunc must return a list of parent vertices | ||||
""" | ||||
if a == b: | ||||
return a | ||||
# find depth from root of all ancestors | ||||
visit = [a, b] | ||||
depth = {} | ||||
while visit: | ||||
vertex = visit[-1] | ||||
pl = pfunc(vertex) | ||||
if not pl: | ||||
depth[vertex] = 0 | ||||
visit.pop() | ||||
else: | ||||
for p in pl: | ||||
if p == a or p == b: # did we find a or b as a parent? | ||||
return p # we're done | ||||
if p not in depth: | ||||
visit.append(p) | ||||
if visit[-1] == vertex: | ||||
depth[vertex] = min([depth[p] for p in pl]) - 1 | ||||
visit.pop() | ||||
# traverse ancestors in order of decreasing distance from root | ||||
def ancestors(vertex): | ||||
h = [(depth[vertex], vertex)] | ||||
seen = {} | ||||
while h: | ||||
d, n = heapq.heappop(h) | ||||
if n not in seen: | ||||
seen[n] = 1 | ||||
yield (d, n) | ||||
for p in pfunc(n): | ||||
heapq.heappush(h, (depth[p], p)) | ||||
def generations(vertex): | ||||
sg, s = None, {} | ||||
for g,v in ancestors(vertex): | ||||
if g != sg: | ||||
if sg: | ||||
yield sg, s | ||||
sg, s = g, {v:1} | ||||
else: | ||||
s[v] = 1 | ||||
yield sg, s | ||||
x = generations(a) | ||||
y = generations(b) | ||||
gx = x.next() | ||||
gy = y.next() | ||||
# increment each ancestor list until it is closer to root than | ||||
# the other, or they match | ||||
try: | ||||
while 1: | ||||
if gx[0] == gy[0]: | ||||
for v in gx[1]: | ||||
if v in gy[1]: | ||||
return v | ||||
gy = y.next() | ||||
gx = x.next() | ||||
elif gx[0] > gy[0]: | ||||
gy = y.next() | ||||
else: | ||||
gx = x.next() | ||||
except StopIteration: | ||||
return None | ||||