##// END OF EJS Templates
packaging: support building WiX installers with PyOxidizer...
packaging: support building WiX installers with PyOxidizer We initially implemented PyOxidizer support for Inno installers. That did most of the heavy work of integrating PyOxidizer into the packaging system. Implementing WiX installer support was pretty straightforward. Aspects of this patch look very similar to Inno's. The main difference is the handling of the Visual C++ Redistributable Runtime files. The WiX installer was formerly using merge modules to install the VC++ 9.0 runtime because this feature is supported by the WiX installer (it isn't easily available to Inno installers). Our strategy for the runtime files is to install the vcruntime140.dll file next to hg.exe just like any other file. While we could leverage WiX's functionality for invoking a VCRedist installer, I don't want to deal with the complexity at this juncture. So, we let run_pyoxidizer() copy vcruntime140.dll into the staging directory (like it does for Inno) and our dynamic WiX XML generator picks it up as a regular file and installs it. We did, however, have to teach mercurial.wxs how to conditionally use the merge modules. But this was rather straightforward. Comparing the file layout of the WiX installers before and after: * Various lib/*.{pyd, dll} files no longer exist * python27.dll was replaced by python37.dll * vcruntime140.dll was added All these changes are expected due to the transition to Python 3 and to PyOxidizer, which embeded the .pyd and .dll files in hg.exe. Differential Revision: https://phab.mercurial-scm.org/D8477

File last commit:

r43109:ce6797ef default
r45260:c9517d9d default
Show More
dagops.rs
275 lines | 8.8 KiB | application/rls-services+xml | RustLexer
Georges Racinet on ishtar.racinet.fr
rust: dagop.headrevs() Rust counterparts...
r41278 // dagops.rs
//
// Copyright 2019 Georges Racinet <georges.racinet@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Miscellaneous DAG operations
//!
//! # Terminology
Yuya Nishihara
rust: apply more formatting fixes...
r43109 //! - By *relative heads* of a collection of revision numbers (`Revision`), we
//! mean those revisions that have no children among the collection.
//! - Similarly *relative roots* of a collection of `Revision`, we mean those
//! whose parents, if any, don't belong to the collection.
Georges Racinet on ishtar.racinet.fr
rust: dagop.headrevs() Rust counterparts...
r41278 use super::{Graph, GraphError, Revision, NULL_REVISION};
Georges Racinet
rust-dagops: range of revisions...
r42353 use crate::ancestors::AncestorsIterator;
use std::collections::{BTreeSet, HashSet};
Georges Racinet on ishtar.racinet.fr
rust: dagop.headrevs() Rust counterparts...
r41278
fn remove_parents(
graph: &impl Graph,
rev: Revision,
set: &mut HashSet<Revision>,
) -> Result<(), GraphError> {
for parent in graph.parents(rev)?.iter() {
if *parent != NULL_REVISION {
set.remove(parent);
}
}
Ok(())
}
/// Relative heads out of some revisions, passed as an iterator.
///
/// These heads are defined as those revisions that have no children
/// among those emitted by the iterator.
///
/// # Performance notes
/// Internally, this clones the iterator, and builds a `HashSet` out of it.
///
/// This function takes an `Iterator` instead of `impl IntoIterator` to
/// guarantee that cloning the iterator doesn't result in cloning the full
/// construct it comes from.
pub fn heads<'a>(
graph: &impl Graph,
iter_revs: impl Clone + Iterator<Item = &'a Revision>,
) -> Result<HashSet<Revision>, GraphError> {
let mut heads: HashSet<Revision> = iter_revs.clone().cloned().collect();
heads.remove(&NULL_REVISION);
for rev in iter_revs {
Georges Racinet
rust: itering less on MissingAncestors.bases for max()...
r41866 if *rev != NULL_REVISION {
remove_parents(graph, *rev, &mut heads)?;
}
Georges Racinet on ishtar.racinet.fr
rust: dagop.headrevs() Rust counterparts...
r41278 }
Ok(heads)
}
/// Retain in `revs` only its relative heads.
///
/// This is an in-place operation, so that control of the incoming
/// set is left to the caller.
/// - a direct Python binding would probably need to build its own `HashSet`
/// from an incoming iterable, even if its sole purpose is to extract the
/// heads.
/// - a Rust caller can decide whether cloning beforehand is appropriate
///
/// # Performance notes
/// Internally, this function will store a full copy of `revs` in a `Vec`.
pub fn retain_heads(
graph: &impl Graph,
revs: &mut HashSet<Revision>,
) -> Result<(), GraphError> {
revs.remove(&NULL_REVISION);
// we need to construct an iterable copy of revs to avoid itering while
// mutating
let as_vec: Vec<Revision> = revs.iter().cloned().collect();
for rev in as_vec {
Georges Racinet
rust: itering less on MissingAncestors.bases for max()...
r41866 if rev != NULL_REVISION {
remove_parents(graph, rev, revs)?;
}
Georges Racinet on ishtar.racinet.fr
rust: dagop.headrevs() Rust counterparts...
r41278 }
Ok(())
}
Georges Racinet
rust-dagops: roots...
r42354 /// Roots of `revs`, passed as a `HashSet`
///
/// They are returned in arbitrary order
pub fn roots<G: Graph>(
graph: &G,
revs: &HashSet<Revision>,
) -> Result<Vec<Revision>, GraphError> {
let mut roots: Vec<Revision> = Vec::new();
for rev in revs {
if graph
.parents(*rev)?
.iter()
.filter(|p| **p != NULL_REVISION)
.all(|p| !revs.contains(p))
{
roots.push(*rev);
}
}
Ok(roots)
}
Georges Racinet
rust-dagops: range of revisions...
r42353 /// Compute the topological range between two collections of revisions
///
/// This is equivalent to the revset `<roots>::<heads>`.
///
/// Currently, the given `Graph` has to implement `Clone`, which means
/// actually cloning just a reference-counted Python pointer if
/// it's passed over through `rust-cpython`. This is due to the internal
/// use of `AncestorsIterator`
///
/// # Algorithmic details
///
/// This is a two-pass swipe inspired from what `reachableroots2` from
/// `mercurial.cext.parsers` does to obtain the same results.
///
/// - first, we climb up the DAG from `heads` in topological order, keeping
/// them in the vector `heads_ancestors` vector, and adding any element of
/// `roots` we find among them to the resulting range.
/// - Then, we iterate on that recorded vector so that a revision is always
/// emitted after its parents and add all revisions whose parents are already
/// in the range to the results.
///
/// # Performance notes
///
/// The main difference with the C implementation is that
/// the latter uses a flat array with bit flags, instead of complex structures
/// like `HashSet`, making it faster in most scenarios. In theory, it's
/// possible that the present implementation could be more memory efficient
/// for very large repositories with many branches.
pub fn range(
graph: &(impl Graph + Clone),
roots: impl IntoIterator<Item = Revision>,
heads: impl IntoIterator<Item = Revision>,
) -> Result<BTreeSet<Revision>, GraphError> {
let mut range = BTreeSet::new();
let roots: HashSet<Revision> = roots.into_iter().collect();
let min_root: Revision = match roots.iter().cloned().min() {
None => {
return Ok(range);
}
Some(r) => r,
};
// Internally, AncestorsIterator currently maintains a `HashSet`
// of all seen revision, which is also what we record, albeit in an ordered
// way. There's room for improvement on this duplication.
let ait = AncestorsIterator::new(graph.clone(), heads, min_root, true)?;
let mut heads_ancestors: Vec<Revision> = Vec::new();
for revres in ait {
let rev = revres?;
if roots.contains(&rev) {
range.insert(rev);
}
heads_ancestors.push(rev);
}
for rev in heads_ancestors.into_iter().rev() {
for parent in graph.parents(rev)?.iter() {
if *parent != NULL_REVISION && range.contains(parent) {
range.insert(rev);
}
}
}
Ok(range)
}
Georges Racinet on ishtar.racinet.fr
rust: dagop.headrevs() Rust counterparts...
r41278 #[cfg(test)]
mod tests {
use super::*;
use crate::testing::SampleGraph;
/// Apply `retain_heads()` to the given slice and return as a sorted `Vec`
fn retain_heads_sorted(
graph: &impl Graph,
revs: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
let mut revs: HashSet<Revision> = revs.iter().cloned().collect();
retain_heads(graph, &mut revs)?;
let mut as_vec: Vec<Revision> = revs.iter().cloned().collect();
as_vec.sort();
Ok(as_vec)
}
#[test]
fn test_retain_heads() -> Result<(), GraphError> {
assert_eq!(retain_heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
assert_eq!(
retain_heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![1, 6, 12]
);
assert_eq!(
retain_heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![3, 5, 8, 9]
);
Ok(())
}
/// Apply `heads()` to the given slice and return as a sorted `Vec`
fn heads_sorted(
graph: &impl Graph,
revs: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
let heads = heads(graph, revs.iter())?;
let mut as_vec: Vec<Revision> = heads.iter().cloned().collect();
as_vec.sort();
Ok(as_vec)
}
#[test]
fn test_heads() -> Result<(), GraphError> {
assert_eq!(heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
assert_eq!(
heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![1, 6, 12]
);
assert_eq!(
heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![3, 5, 8, 9]
);
Ok(())
}
Georges Racinet
rust-dagops: roots...
r42354 /// Apply `roots()` and sort the result for easier comparison
fn roots_sorted(
graph: &impl Graph,
revs: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
let mut as_vec = roots(graph, &revs.iter().cloned().collect())?;
as_vec.sort();
Ok(as_vec)
}
#[test]
fn test_roots() -> Result<(), GraphError> {
assert_eq!(roots_sorted(&SampleGraph, &[4, 5, 6])?, vec![4]);
assert_eq!(
roots_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![0, 4, 12]
);
assert_eq!(
roots_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![1, 8]
);
Ok(())
}
Georges Racinet
rust-dagops: range of revisions...
r42353 /// Apply `range()` and convert the result into a Vec for easier comparison
fn range_vec(
graph: impl Graph + Clone,
roots: &[Revision],
heads: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
range(&graph, roots.iter().cloned(), heads.iter().cloned())
.map(|bs| bs.into_iter().collect())
}
#[test]
fn test_range() -> Result<(), GraphError> {
assert_eq!(range_vec(SampleGraph, &[0], &[4])?, vec![0, 1, 2, 4]);
assert_eq!(range_vec(SampleGraph, &[0], &[8])?, vec![]);
assert_eq!(
range_vec(SampleGraph, &[5, 6], &[10, 11, 13])?,
vec![5, 10]
);
assert_eq!(
range_vec(SampleGraph, &[5, 6], &[10, 12])?,
vec![5, 6, 9, 10, 12]
);
Ok(())
}
Georges Racinet on ishtar.racinet.fr
rust: dagop.headrevs() Rust counterparts...
r41278 }