##// END OF EJS Templates
dirstate: ignore symlinks when fs cannot handle them (issue1888)...
dirstate: ignore symlinks when fs cannot handle them (issue1888) When the filesystem cannot handle the executable bit, we currently ignore it completely when looking for modified files. Similarly, it is impossible to set or clear the bit when the filesystem ignores it. This patch makes Mercurial treat symbolic links the same way. Symlinks are a little different since they manifest themselves as small files containing a filename (the symlink target). On Windows, these files show up as regular files, and on Linux and Mac they show up as real symlinks. Issue1888 presents a case where the symlink files are better ignored from the Windows side. A Linux client creates symlinks in a working copy which is shared over a network between Linux and Windows clients. The Samba server is helpful and defererences the symlink when the Windows client looks at it. This means that Mercurial on the Windows side sees file content instead of a file name in the symlink, and hence flags the link as modified. Ignoring the change would be much more helpful, similarly to how Mercurial does not report any changes when executable bits are ignored in a checkout on Windows. An initial checkout of a symbolic link on a file system that cannot handle symbolic links will still result in a regular file containing the target file name as its content. Sharing such a checkout with a Linux client will not turn the file into a symlink automatically, but 'hg revert' can fix that. After the revert, the Windows client will see the correct file content (provided by the Samba server when it follows the link on the Linux side) and otherwise ignore the change. Running 'hg perfstatus' 10 times gives these results: Before: After: min: 0.544703 min: 0.546549 med: 0.547592 med: 0.548881 avg: 0.549146 avg: 0.548549 max: 0.564112 max: 0.551504 The median time is increased about 0.24%.

File last commit:

r11578:bb7af1de default
r11769:ca6cebd8 stable
Show More
discovery.py
350 lines | 13.1 KiB | text/x-python | PythonLexer
Dirkjan Ochtman
discovery: fix description line
r11313 # discovery.py - protocol changeset discovery functions
Dirkjan Ochtman
move discovery methods from localrepo into new discovery module
r11301 #
Dirkjan Ochtman
discovery: fix description line
r11313 # Copyright 2010 Matt Mackall <mpm@selenic.com>
Dirkjan Ochtman
move discovery methods from localrepo into new discovery module
r11301 #
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from node import nullid, short
from i18n import _
import util, error
def findincoming(repo, remote, base=None, heads=None, force=False):
"""Return list of roots of the subsets of missing nodes from remote
If base dict is specified, assume that these nodes and their parents
exist on the remote side and that no child of a node of base exists
in both remote and repo.
Furthermore base will be updated to include the nodes that exists
in repo and remote but no children exists in repo and remote.
If a list of heads is specified, return only nodes which are heads
or ancestors of these heads.
All the ancestors of base are in repo and in remote.
All the descendants of the list returned are missing in repo.
(and so we know that the rest of the nodes are missing in remote, see
outgoing)
"""
return findcommonincoming(repo, remote, base, heads, force)[1]
def findcommonincoming(repo, remote, base=None, heads=None, force=False):
"""Return a tuple (common, missing roots, heads) used to identify
missing nodes from remote.
If base dict is specified, assume that these nodes and their parents
exist on the remote side and that no child of a node of base exists
in both remote and repo.
Furthermore base will be updated to include the nodes that exists
in repo and remote but no children exists in repo and remote.
If a list of heads is specified, return only nodes which are heads
or ancestors of these heads.
All the ancestors of base are in repo and in remote.
"""
m = repo.changelog.nodemap
search = []
fetch = set()
seen = set()
seenbranch = set()
if base is None:
base = {}
if not heads:
heads = remote.heads()
if repo.changelog.tip() == nullid:
base[nullid] = 1
if heads != [nullid]:
return [nullid], [nullid], list(heads)
return [nullid], [], []
# assume we're closer to the tip than the root
# and start by examining the heads
repo.ui.status(_("searching for changes\n"))
unknown = []
for h in heads:
if h not in m:
unknown.append(h)
else:
base[h] = 1
heads = unknown
if not unknown:
return base.keys(), [], []
req = set(unknown)
reqcnt = 0
# search through remote branches
# a 'branch' here is a linear segment of history, with four parts:
# head, root, first parent, second parent
# (a branch always has two parents (or none) by definition)
unknown = remote.branches(unknown)
while unknown:
r = []
while unknown:
n = unknown.pop(0)
if n[0] in seen:
continue
repo.ui.debug("examining %s:%s\n"
% (short(n[0]), short(n[1])))
if n[0] == nullid: # found the end of the branch
pass
elif n in seenbranch:
repo.ui.debug("branch already found\n")
continue
elif n[1] and n[1] in m: # do we know the base?
repo.ui.debug("found incomplete branch %s:%s\n"
% (short(n[0]), short(n[1])))
search.append(n[0:2]) # schedule branch range for scanning
seenbranch.add(n)
else:
if n[1] not in seen and n[1] not in fetch:
if n[2] in m and n[3] in m:
repo.ui.debug("found new changeset %s\n" %
short(n[1]))
fetch.add(n[1]) # earliest unknown
for p in n[2:4]:
if p in m:
base[p] = 1 # latest known
for p in n[2:4]:
if p not in req and p not in m:
r.append(p)
req.add(p)
seen.add(n[0])
if r:
reqcnt += 1
repo.ui.progress(_('searching'), reqcnt, unit=_('queries'))
repo.ui.debug("request %d: %s\n" %
(reqcnt, " ".join(map(short, r))))
for p in xrange(0, len(r), 10):
for b in remote.branches(r[p:p + 10]):
repo.ui.debug("received %s:%s\n" %
(short(b[0]), short(b[1])))
unknown.append(b)
# do binary search on the branches we found
while search:
newsearch = []
reqcnt += 1
repo.ui.progress(_('searching'), reqcnt, unit=_('queries'))
for n, l in zip(search, remote.between(search)):
l.append(n[1])
p = n[0]
f = 1
for i in l:
repo.ui.debug("narrowing %d:%d %s\n" % (f, len(l), short(i)))
if i in m:
if f <= 2:
repo.ui.debug("found new branch changeset %s\n" %
short(p))
fetch.add(p)
base[i] = 1
else:
repo.ui.debug("narrowed branch search to %s:%s\n"
% (short(p), short(i)))
newsearch.append((p, i))
break
p, f = i, f * 2
search = newsearch
# sanity check our fetch list
for f in fetch:
if f in m:
raise error.RepoError(_("already have changeset ")
+ short(f[:4]))
if base.keys() == [nullid]:
if force:
repo.ui.warn(_("warning: repository is unrelated\n"))
else:
raise util.Abort(_("repository is unrelated"))
repo.ui.debug("found new changesets starting at " +
" ".join([short(f) for f in fetch]) + "\n")
repo.ui.progress(_('searching'), None)
repo.ui.debug("%d total queries\n" % reqcnt)
return base.keys(), list(fetch), heads
def findoutgoing(repo, remote, base=None, heads=None, force=False):
"""Return list of nodes that are roots of subsets not in remote
If base dict is specified, assume that these nodes and their parents
exist on the remote side.
If a list of heads is specified, return only nodes which are heads
or ancestors of these heads, and return a second element which
contains all remote heads which get new children.
"""
if base is None:
base = {}
findincoming(repo, remote, base, heads, force=force)
repo.ui.debug("common changesets up to "
+ " ".join(map(short, base.keys())) + "\n")
remain = set(repo.changelog.nodemap)
# prune everything remote has from the tree
remain.remove(nullid)
remove = base.keys()
while remove:
n = remove.pop(0)
if n in remain:
remain.remove(n)
for p in repo.changelog.parents(n):
remove.append(p)
# find every node whose parents have been pruned
subset = []
# find every remote head that will get new children
updated_heads = set()
for n in remain:
p1, p2 = repo.changelog.parents(n)
if p1 not in remain and p2 not in remain:
subset.append(n)
if heads:
if p1 in heads:
updated_heads.add(p1)
if p2 in heads:
updated_heads.add(p2)
# this is the set of all roots we have to push
if heads:
return subset, list(updated_heads)
else:
return subset
def prepush(repo, remote, force, revs, newbranch):
'''Analyze the local and remote repositories and determine which
changesets need to be pushed to the remote. Return value depends
on circumstances:
If we are not going to push anything, return a tuple (None,
outgoing) where outgoing is 0 if there are no outgoing
changesets and 1 if there are, but we refuse to push them
(e.g. would create new remote heads).
Otherwise, return a tuple (changegroup, remoteheads), where
changegroup is a readable file-like object whose read() returns
successive changegroup chunks ready to be sent over the wire and
remoteheads is the list of remote heads.'''
common = {}
remote_heads = remote.heads()
inc = findincoming(repo, remote, common, remote_heads, force=force)
cl = repo.changelog
update, updated_heads = findoutgoing(repo, remote, common, remote_heads)
outg, bases, heads = cl.nodesbetween(update, revs)
if not bases:
repo.ui.status(_("no changes found\n"))
return None, 1
if not force and remote_heads != [nullid]:
def fail_multiple_heads(unsynced, branch=None):
if branch:
msg = _("abort: push creates new remote heads"
" on branch '%s'!\n") % branch
else:
msg = _("abort: push creates new remote heads!\n")
repo.ui.warn(msg)
if unsynced:
repo.ui.status(_("(you should pull and merge or"
" use push -f to force)\n"))
else:
repo.ui.status(_("(did you forget to merge?"
" use push -f to force)\n"))
return None, 0
if remote.capable('branchmap'):
# Check for each named branch if we're creating new remote heads.
# To be a remote head after push, node must be either:
# - unknown locally
# - a local outgoing head descended from update
# - a remote head that's known locally and not
# ancestral to an outgoing head
#
# New named branches cannot be created without --force.
# 1. Create set of branches involved in the push.
branches = set(repo[n].branch() for n in outg)
# 2. Check for new branches on the remote.
remotemap = remote.branchmap()
newbranches = branches - set(remotemap)
if newbranches and not newbranch: # new branch requires --new-branch
Martin Geisler
discovery: use stable sort order in --new-branch warning...
r11429 branchnames = ', '.join(sorted(newbranches))
Dirkjan Ochtman
move discovery methods from localrepo into new discovery module
r11301 repo.ui.warn(_("abort: push creates "
"new remote branches: %s!\n")
% branchnames)
repo.ui.status(_("(use 'hg push --new-branch' to create new "
"remote branches)\n"))
return None, 0
branches.difference_update(newbranches)
# 3. Construct the initial oldmap and newmap dicts.
# They contain information about the remote heads before and
# after the push, respectively.
# Heads not found locally are not included in either dict,
# since they won't be affected by the push.
# unsynced contains all branches with incoming changesets.
oldmap = {}
newmap = {}
unsynced = set()
for branch in branches:
remoteheads = remotemap[branch]
prunedheads = [h for h in remoteheads if h in cl.nodemap]
oldmap[branch] = prunedheads
newmap[branch] = list(prunedheads)
if len(remoteheads) > len(prunedheads):
unsynced.add(branch)
# 4. Update newmap with outgoing changes.
# This will possibly add new heads and remove existing ones.
ctxgen = (repo[n] for n in outg)
repo._updatebranchcache(newmap, ctxgen)
# 5. Check for new heads.
# If there are more heads after the push than before, a suitable
# warning, depending on unsynced status, is displayed.
for branch in branches:
if len(newmap[branch]) > len(oldmap[branch]):
return fail_multiple_heads(branch in unsynced, branch)
# 6. Check for unsynced changes on involved branches.
if unsynced:
repo.ui.warn(_("note: unsynced remote changes!\n"))
else:
# Old servers: Check for new topological heads.
# Code based on _updatebranchcache.
newheads = set(h for h in remote_heads if h in cl.nodemap)
oldheadcnt = len(newheads)
newheads.update(outg)
if len(newheads) > 1:
for latest in reversed(outg):
if latest not in newheads:
continue
minhrev = min(cl.rev(h) for h in newheads)
reachable = cl.reachable(latest, cl.node(minhrev))
reachable.remove(latest)
newheads.difference_update(reachable)
if len(newheads) > oldheadcnt:
return fail_multiple_heads(inc)
if inc:
repo.ui.warn(_("note: unsynced remote changes!\n"))
if revs is None:
# use the fast path, no race possible on push
nodes = repo.changelog.findmissing(common.keys())
cg = repo._changegroup(nodes, 'push')
else:
cg = repo.changegroupsubset(update, revs, 'push')
return cg, remote_heads