##// END OF EJS Templates
hgweb: only include graph-related data in jsdata variable on /graph pages (BC)...
hgweb: only include graph-related data in jsdata variable on /graph pages (BC) Historically, client-side graph code was not only rendering the graph itself, but it was also adding all of the changeset information to the page as well. It meant that JavaScript code needed to construct valid HTML as a string (although proper escaping was done server-side). It wasn't too clunky, even though it meant that a lot of server-side things were duplicated client-side for no good reason, but the worst thing about it was the data format it used. It was somewhat future-proof, but not human-friendly, because it was just a tuple: it was possible to append things to it (as was done in e.g. 270f57d35525), but you'd then have to remember the indices and reading the resulting JS code wasn't easy, because cur[8] is not descriptive at all. So what would need to happen for graph to have more features, such as more changeset information or a different vertex style (branch-closing, obsolete)? First you'd need to take some property, process it (e.g. escape and pass through templatefilters function, and mind the encoding too), append it to jsdata and remember its index, then go add nearly identical JavaScript code to 4 different hgweb themes that use jsdata to render HTML, and finally try and forget how brittle it all felt. Oh yeah, and the indices go to double digits if we add 2 more items, say phase and obsolescence, and there are more to come. Rendering vertex in a different style would need another property (say, character "o", "_", or "x"), except if you want to be backwards-compatible, it would need to go after tags and bookmarks, and that just doesn't feel right. So here I'm trying to fix both the duplication of code and the data format: - changesets will be rendered by hgweb templates the same way as changelog and other such pages, so jsdata won't need any information that's not needed for rendering the graph itself - jsdata will be a dict, or an Object in JS, which is a lot nicer to humans and is a lot more future-proof in the long run, because it doesn't use numeric indices What about hgweb themes? Obviously, this will break all hgweb themes that render graph in JavaScript, including 3rd-party custom ones. But this will also reduce the size of client-side code and make it more uniform, so that it can be shared across hgweb themes, further reducing its size. The next few patches demonstrate that it's not hard to adapt a theme to these changes. And in a later series, I'm planning to move duplicate JS code from */graph.tmpl to mercurial.js and leave only 4 lines of code embedded in those <script> elements, and even that would be just to allow redefining graph.vertex function. So adapting a custom 3rd-party theme to these changes would mean: - creating or copying graphnode.tmpl and adding it to the map file (if a theme doesn't already use __base__) - modifying one line in graph.tmpl and simply removing the bigger part of JavaScript code from there Making these changes in this patch and not updating every hgweb theme that uses jsdata at the same time is a bit of a cheat to make this series more manageable: /graph pages that use jsdata are broken by this patch, but since there are no tests that would detect this, bisect works fine; and themes are updated separately, in the next 4 patches of this series to ease reviewing.

File last commit:

r30895:c32454d6 default
r35218:d61f2a3d default
Show More
cover.c
1021 lines | 32.3 KiB | text/x-c | CLexer
Gregory Szorc
zstd: vendor python-zstandard 0.7.0...
r30895 /**
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
/*-*************************************
* Dependencies
***************************************/
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memset */
#include <time.h> /* clock */
#include "mem.h" /* read */
#include "pool.h"
#include "threading.h"
#include "zstd_internal.h" /* includes zstd.h */
#ifndef ZDICT_STATIC_LINKING_ONLY
#define ZDICT_STATIC_LINKING_ONLY
#endif
#include "zdict.h"
/*-*************************************
* Constants
***************************************/
#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((U32)-1) : ((U32)1 GB))
/*-*************************************
* Console display
***************************************/
static int g_displayLevel = 2;
#define DISPLAY(...) \
{ \
fprintf(stderr, __VA_ARGS__); \
fflush(stderr); \
}
#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
if (displayLevel >= l) { \
DISPLAY(__VA_ARGS__); \
} /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
if (displayLevel >= l) { \
if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) { \
g_time = clock(); \
DISPLAY(__VA_ARGS__); \
if (displayLevel >= 4) \
fflush(stdout); \
} \
}
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100;
static clock_t g_time = 0;
/*-*************************************
* Hash table
***************************************
* A small specialized hash map for storing activeDmers.
* The map does not resize, so if it becomes full it will loop forever.
* Thus, the map must be large enough to store every value.
* The map implements linear probing and keeps its load less than 0.5.
*/
#define MAP_EMPTY_VALUE ((U32)-1)
typedef struct COVER_map_pair_t_s {
U32 key;
U32 value;
} COVER_map_pair_t;
typedef struct COVER_map_s {
COVER_map_pair_t *data;
U32 sizeLog;
U32 size;
U32 sizeMask;
} COVER_map_t;
/**
* Clear the map.
*/
static void COVER_map_clear(COVER_map_t *map) {
memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
}
/**
* Initializes a map of the given size.
* Returns 1 on success and 0 on failure.
* The map must be destroyed with COVER_map_destroy().
* The map is only guaranteed to be large enough to hold size elements.
*/
static int COVER_map_init(COVER_map_t *map, U32 size) {
map->sizeLog = ZSTD_highbit32(size) + 2;
map->size = (U32)1 << map->sizeLog;
map->sizeMask = map->size - 1;
map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
if (!map->data) {
map->sizeLog = 0;
map->size = 0;
return 0;
}
COVER_map_clear(map);
return 1;
}
/**
* Internal hash function
*/
static const U32 prime4bytes = 2654435761U;
static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
return (key * prime4bytes) >> (32 - map->sizeLog);
}
/**
* Helper function that returns the index that a key should be placed into.
*/
static U32 COVER_map_index(COVER_map_t *map, U32 key) {
const U32 hash = COVER_map_hash(map, key);
U32 i;
for (i = hash;; i = (i + 1) & map->sizeMask) {
COVER_map_pair_t *pos = &map->data[i];
if (pos->value == MAP_EMPTY_VALUE) {
return i;
}
if (pos->key == key) {
return i;
}
}
}
/**
* Returns the pointer to the value for key.
* If key is not in the map, it is inserted and the value is set to 0.
* The map must not be full.
*/
static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
if (pos->value == MAP_EMPTY_VALUE) {
pos->key = key;
pos->value = 0;
}
return &pos->value;
}
/**
* Deletes key from the map if present.
*/
static void COVER_map_remove(COVER_map_t *map, U32 key) {
U32 i = COVER_map_index(map, key);
COVER_map_pair_t *del = &map->data[i];
U32 shift = 1;
if (del->value == MAP_EMPTY_VALUE) {
return;
}
for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
COVER_map_pair_t *const pos = &map->data[i];
/* If the position is empty we are done */
if (pos->value == MAP_EMPTY_VALUE) {
del->value = MAP_EMPTY_VALUE;
return;
}
/* If pos can be moved to del do so */
if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
del->key = pos->key;
del->value = pos->value;
del = pos;
shift = 1;
} else {
++shift;
}
}
}
/**
* Destroyes a map that is inited with COVER_map_init().
*/
static void COVER_map_destroy(COVER_map_t *map) {
if (map->data) {
free(map->data);
}
map->data = NULL;
map->size = 0;
}
/*-*************************************
* Context
***************************************/
typedef struct {
const BYTE *samples;
size_t *offsets;
const size_t *samplesSizes;
size_t nbSamples;
U32 *suffix;
size_t suffixSize;
U32 *freqs;
U32 *dmerAt;
unsigned d;
} COVER_ctx_t;
/* We need a global context for qsort... */
static COVER_ctx_t *g_ctx = NULL;
/*-*************************************
* Helper functions
***************************************/
/**
* Returns the sum of the sample sizes.
*/
static size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
size_t sum = 0;
size_t i;
for (i = 0; i < nbSamples; ++i) {
sum += samplesSizes[i];
}
return sum;
}
/**
* Returns -1 if the dmer at lp is less than the dmer at rp.
* Return 0 if the dmers at lp and rp are equal.
* Returns 1 if the dmer at lp is greater than the dmer at rp.
*/
static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
const U32 lhs = *(const U32 *)lp;
const U32 rhs = *(const U32 *)rp;
return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
}
/**
* Same as COVER_cmp() except ties are broken by pointer value
* NOTE: g_ctx must be set to call this function. A global is required because
* qsort doesn't take an opaque pointer.
*/
static int COVER_strict_cmp(const void *lp, const void *rp) {
int result = COVER_cmp(g_ctx, lp, rp);
if (result == 0) {
result = lp < rp ? -1 : 1;
}
return result;
}
/**
* Returns the first pointer in [first, last) whose element does not compare
* less than value. If no such element exists it returns last.
*/
static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
size_t value) {
size_t count = last - first;
while (count != 0) {
size_t step = count / 2;
const size_t *ptr = first;
ptr += step;
if (*ptr < value) {
first = ++ptr;
count -= step + 1;
} else {
count = step;
}
}
return first;
}
/**
* Generic groupBy function.
* Groups an array sorted by cmp into groups with equivalent values.
* Calls grp for each group.
*/
static void
COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
int (*cmp)(COVER_ctx_t *, const void *, const void *),
void (*grp)(COVER_ctx_t *, const void *, const void *)) {
const BYTE *ptr = (const BYTE *)data;
size_t num = 0;
while (num < count) {
const BYTE *grpEnd = ptr + size;
++num;
while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
grpEnd += size;
++num;
}
grp(ctx, ptr, grpEnd);
ptr = grpEnd;
}
}
/*-*************************************
* Cover functions
***************************************/
/**
* Called on each group of positions with the same dmer.
* Counts the frequency of each dmer and saves it in the suffix array.
* Fills `ctx->dmerAt`.
*/
static void COVER_group(COVER_ctx_t *ctx, const void *group,
const void *groupEnd) {
/* The group consists of all the positions with the same first d bytes. */
const U32 *grpPtr = (const U32 *)group;
const U32 *grpEnd = (const U32 *)groupEnd;
/* The dmerId is how we will reference this dmer.
* This allows us to map the whole dmer space to a much smaller space, the
* size of the suffix array.
*/
const U32 dmerId = (U32)(grpPtr - ctx->suffix);
/* Count the number of samples this dmer shows up in */
U32 freq = 0;
/* Details */
const size_t *curOffsetPtr = ctx->offsets;
const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
/* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
* different sample than the last.
*/
size_t curSampleEnd = ctx->offsets[0];
for (; grpPtr != grpEnd; ++grpPtr) {
/* Save the dmerId for this position so we can get back to it. */
ctx->dmerAt[*grpPtr] = dmerId;
/* Dictionaries only help for the first reference to the dmer.
* After that zstd can reference the match from the previous reference.
* So only count each dmer once for each sample it is in.
*/
if (*grpPtr < curSampleEnd) {
continue;
}
freq += 1;
/* Binary search to find the end of the sample *grpPtr is in.
* In the common case that grpPtr + 1 == grpEnd we can skip the binary
* search because the loop is over.
*/
if (grpPtr + 1 != grpEnd) {
const size_t *sampleEndPtr =
COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
curSampleEnd = *sampleEndPtr;
curOffsetPtr = sampleEndPtr + 1;
}
}
/* At this point we are never going to look at this segment of the suffix
* array again. We take advantage of this fact to save memory.
* We store the frequency of the dmer in the first position of the group,
* which is dmerId.
*/
ctx->suffix[dmerId] = freq;
}
/**
* A segment is a range in the source as well as the score of the segment.
*/
typedef struct {
U32 begin;
U32 end;
double score;
} COVER_segment_t;
/**
* Selects the best segment in an epoch.
* Segments of are scored according to the function:
*
* Let F(d) be the frequency of dmer d.
* Let S_i be the dmer at position i of segment S which has length k.
*
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
*
* Once the dmer d is in the dictionay we set F(d) = 0.
*/
static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
COVER_map_t *activeDmers, U32 begin,
U32 end, COVER_params_t parameters) {
/* Constants */
const U32 k = parameters.k;
const U32 d = parameters.d;
const U32 dmersInK = k - d + 1;
/* Try each segment (activeSegment) and save the best (bestSegment) */
COVER_segment_t bestSegment = {0, 0, 0};
COVER_segment_t activeSegment;
/* Reset the activeDmers in the segment */
COVER_map_clear(activeDmers);
/* The activeSegment starts at the beginning of the epoch. */
activeSegment.begin = begin;
activeSegment.end = begin;
activeSegment.score = 0;
/* Slide the activeSegment through the whole epoch.
* Save the best segment in bestSegment.
*/
while (activeSegment.end < end) {
/* The dmerId for the dmer at the next position */
U32 newDmer = ctx->dmerAt[activeSegment.end];
/* The entry in activeDmers for this dmerId */
U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
/* If the dmer isn't already present in the segment add its score. */
if (*newDmerOcc == 0) {
/* The paper suggest using the L-0.5 norm, but experiments show that it
* doesn't help.
*/
activeSegment.score += freqs[newDmer];
}
/* Add the dmer to the segment */
activeSegment.end += 1;
*newDmerOcc += 1;
/* If the window is now too large, drop the first position */
if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
U32 delDmer = ctx->dmerAt[activeSegment.begin];
U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
activeSegment.begin += 1;
*delDmerOcc -= 1;
/* If this is the last occurence of the dmer, subtract its score */
if (*delDmerOcc == 0) {
COVER_map_remove(activeDmers, delDmer);
activeSegment.score -= freqs[delDmer];
}
}
/* If this segment is the best so far save it */
if (activeSegment.score > bestSegment.score) {
bestSegment = activeSegment;
}
}
{
/* Trim off the zero frequency head and tail from the segment. */
U32 newBegin = bestSegment.end;
U32 newEnd = bestSegment.begin;
U32 pos;
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
U32 freq = freqs[ctx->dmerAt[pos]];
if (freq != 0) {
newBegin = MIN(newBegin, pos);
newEnd = pos + 1;
}
}
bestSegment.begin = newBegin;
bestSegment.end = newEnd;
}
{
/* Zero out the frequency of each dmer covered by the chosen segment. */
U32 pos;
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
freqs[ctx->dmerAt[pos]] = 0;
}
}
return bestSegment;
}
/**
* Check the validity of the parameters.
* Returns non-zero if the parameters are valid and 0 otherwise.
*/
static int COVER_checkParameters(COVER_params_t parameters) {
/* k and d are required parameters */
if (parameters.d == 0 || parameters.k == 0) {
return 0;
}
/* d <= k */
if (parameters.d > parameters.k) {
return 0;
}
return 1;
}
/**
* Clean up a context initialized with `COVER_ctx_init()`.
*/
static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
if (!ctx) {
return;
}
if (ctx->suffix) {
free(ctx->suffix);
ctx->suffix = NULL;
}
if (ctx->freqs) {
free(ctx->freqs);
ctx->freqs = NULL;
}
if (ctx->dmerAt) {
free(ctx->dmerAt);
ctx->dmerAt = NULL;
}
if (ctx->offsets) {
free(ctx->offsets);
ctx->offsets = NULL;
}
}
/**
* Prepare a context for dictionary building.
* The context is only dependent on the parameter `d` and can used multiple
* times.
* Returns 1 on success or zero on error.
* The context must be destroyed with `COVER_ctx_destroy()`.
*/
static int COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
const size_t *samplesSizes, unsigned nbSamples,
unsigned d) {
const BYTE *const samples = (const BYTE *)samplesBuffer;
const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
/* Checks */
if (totalSamplesSize < d ||
totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
DISPLAYLEVEL(1, "Total samples size is too large, maximum size is %u MB\n",
(COVER_MAX_SAMPLES_SIZE >> 20));
return 0;
}
/* Zero the context */
memset(ctx, 0, sizeof(*ctx));
DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbSamples,
(U32)totalSamplesSize);
ctx->samples = samples;
ctx->samplesSizes = samplesSizes;
ctx->nbSamples = nbSamples;
/* Partial suffix array */
ctx->suffixSize = totalSamplesSize - d + 1;
ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
/* Maps index to the dmerID */
ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
/* The offsets of each file */
ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
COVER_ctx_destroy(ctx);
return 0;
}
ctx->freqs = NULL;
ctx->d = d;
/* Fill offsets from the samlesSizes */
{
U32 i;
ctx->offsets[0] = 0;
for (i = 1; i <= nbSamples; ++i) {
ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
}
}
DISPLAYLEVEL(2, "Constructing partial suffix array\n");
{
/* suffix is a partial suffix array.
* It only sorts suffixes by their first parameters.d bytes.
* The sort is stable, so each dmer group is sorted by position in input.
*/
U32 i;
for (i = 0; i < ctx->suffixSize; ++i) {
ctx->suffix[i] = i;
}
/* qsort doesn't take an opaque pointer, so pass as a global */
g_ctx = ctx;
qsort(ctx->suffix, ctx->suffixSize, sizeof(U32), &COVER_strict_cmp);
}
DISPLAYLEVEL(2, "Computing frequencies\n");
/* For each dmer group (group of positions with the same first d bytes):
* 1. For each position we set dmerAt[position] = dmerID. The dmerID is
* (groupBeginPtr - suffix). This allows us to go from position to
* dmerID so we can look up values in freq.
* 2. We calculate how many samples the dmer occurs in and save it in
* freqs[dmerId].
*/
COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx, &COVER_cmp,
&COVER_group);
ctx->freqs = ctx->suffix;
ctx->suffix = NULL;
return 1;
}
/**
* Given the prepared context build the dictionary.
*/
static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
COVER_map_t *activeDmers, void *dictBuffer,
size_t dictBufferCapacity,
COVER_params_t parameters) {
BYTE *const dict = (BYTE *)dictBuffer;
size_t tail = dictBufferCapacity;
/* Divide the data up into epochs of equal size.
* We will select at least one segment from each epoch.
*/
const U32 epochs = (U32)(dictBufferCapacity / parameters.k);
const U32 epochSize = (U32)(ctx->suffixSize / epochs);
size_t epoch;
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n", epochs,
epochSize);
/* Loop through the epochs until there are no more segments or the dictionary
* is full.
*/
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs) {
const U32 epochBegin = (U32)(epoch * epochSize);
const U32 epochEnd = epochBegin + epochSize;
size_t segmentSize;
/* Select a segment */
COVER_segment_t segment = COVER_selectSegment(
ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
/* Trim the segment if necessary and if it is empty then we are done */
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
if (segmentSize == 0) {
break;
}
/* We fill the dictionary from the back to allow the best segments to be
* referenced with the smallest offsets.
*/
tail -= segmentSize;
memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
DISPLAYUPDATE(
2, "\r%u%% ",
(U32)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
}
DISPLAYLEVEL(2, "\r%79s\r", "");
return tail;
}
/**
* Translate from COVER_params_t to ZDICT_params_t required for finalizing the
* dictionary.
*/
static ZDICT_params_t COVER_translateParams(COVER_params_t parameters) {
ZDICT_params_t zdictParams;
memset(&zdictParams, 0, sizeof(zdictParams));
zdictParams.notificationLevel = 1;
zdictParams.dictID = parameters.dictID;
zdictParams.compressionLevel = parameters.compressionLevel;
return zdictParams;
}
/**
* Constructs a dictionary using a heuristic based on the following paper:
*
* Liao, Petri, Moffat, Wirth
* Effective Construction of Relative Lempel-Ziv Dictionaries
* Published in WWW 2016.
*/
ZDICTLIB_API size_t COVER_trainFromBuffer(
void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
const size_t *samplesSizes, unsigned nbSamples, COVER_params_t parameters) {
BYTE *const dict = (BYTE *)dictBuffer;
COVER_ctx_t ctx;
COVER_map_t activeDmers;
/* Checks */
if (!COVER_checkParameters(parameters)) {
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
return ERROR(GENERIC);
}
if (nbSamples == 0) {
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
return ERROR(GENERIC);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
ZDICT_DICTSIZE_MIN);
return ERROR(dstSize_tooSmall);
}
/* Initialize global data */
g_displayLevel = parameters.notificationLevel;
/* Initialize context and activeDmers */
if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
parameters.d)) {
return ERROR(GENERIC);
}
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
COVER_ctx_destroy(&ctx);
return ERROR(GENERIC);
}
DISPLAYLEVEL(2, "Building dictionary\n");
{
const size_t tail =
COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
dictBufferCapacity, parameters);
ZDICT_params_t zdictParams = COVER_translateParams(parameters);
const size_t dictionarySize = ZDICT_finalizeDictionary(
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
samplesBuffer, samplesSizes, nbSamples, zdictParams);
if (!ZSTD_isError(dictionarySize)) {
DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
(U32)dictionarySize);
}
COVER_ctx_destroy(&ctx);
COVER_map_destroy(&activeDmers);
return dictionarySize;
}
}
/**
* COVER_best_t is used for two purposes:
* 1. Synchronizing threads.
* 2. Saving the best parameters and dictionary.
*
* All of the methods except COVER_best_init() are thread safe if zstd is
* compiled with multithreaded support.
*/
typedef struct COVER_best_s {
pthread_mutex_t mutex;
pthread_cond_t cond;
size_t liveJobs;
void *dict;
size_t dictSize;
COVER_params_t parameters;
size_t compressedSize;
} COVER_best_t;
/**
* Initialize the `COVER_best_t`.
*/
static void COVER_best_init(COVER_best_t *best) {
if (!best) {
return;
}
pthread_mutex_init(&best->mutex, NULL);
pthread_cond_init(&best->cond, NULL);
best->liveJobs = 0;
best->dict = NULL;
best->dictSize = 0;
best->compressedSize = (size_t)-1;
memset(&best->parameters, 0, sizeof(best->parameters));
}
/**
* Wait until liveJobs == 0.
*/
static void COVER_best_wait(COVER_best_t *best) {
if (!best) {
return;
}
pthread_mutex_lock(&best->mutex);
while (best->liveJobs != 0) {
pthread_cond_wait(&best->cond, &best->mutex);
}
pthread_mutex_unlock(&best->mutex);
}
/**
* Call COVER_best_wait() and then destroy the COVER_best_t.
*/
static void COVER_best_destroy(COVER_best_t *best) {
if (!best) {
return;
}
COVER_best_wait(best);
if (best->dict) {
free(best->dict);
}
pthread_mutex_destroy(&best->mutex);
pthread_cond_destroy(&best->cond);
}
/**
* Called when a thread is about to be launched.
* Increments liveJobs.
*/
static void COVER_best_start(COVER_best_t *best) {
if (!best) {
return;
}
pthread_mutex_lock(&best->mutex);
++best->liveJobs;
pthread_mutex_unlock(&best->mutex);
}
/**
* Called when a thread finishes executing, both on error or success.
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
* If this dictionary is the best so far save it and its parameters.
*/
static void COVER_best_finish(COVER_best_t *best, size_t compressedSize,
COVER_params_t parameters, void *dict,
size_t dictSize) {
if (!best) {
return;
}
{
size_t liveJobs;
pthread_mutex_lock(&best->mutex);
--best->liveJobs;
liveJobs = best->liveJobs;
/* If the new dictionary is better */
if (compressedSize < best->compressedSize) {
/* Allocate space if necessary */
if (!best->dict || best->dictSize < dictSize) {
if (best->dict) {
free(best->dict);
}
best->dict = malloc(dictSize);
if (!best->dict) {
best->compressedSize = ERROR(GENERIC);
best->dictSize = 0;
return;
}
}
/* Save the dictionary, parameters, and size */
memcpy(best->dict, dict, dictSize);
best->dictSize = dictSize;
best->parameters = parameters;
best->compressedSize = compressedSize;
}
pthread_mutex_unlock(&best->mutex);
if (liveJobs == 0) {
pthread_cond_broadcast(&best->cond);
}
}
}
/**
* Parameters for COVER_tryParameters().
*/
typedef struct COVER_tryParameters_data_s {
const COVER_ctx_t *ctx;
COVER_best_t *best;
size_t dictBufferCapacity;
COVER_params_t parameters;
} COVER_tryParameters_data_t;
/**
* Tries a set of parameters and upates the COVER_best_t with the results.
* This function is thread safe if zstd is compiled with multithreaded support.
* It takes its parameters as an *OWNING* opaque pointer to support threading.
*/
static void COVER_tryParameters(void *opaque) {
/* Save parameters as local variables */
COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t *)opaque;
const COVER_ctx_t *const ctx = data->ctx;
const COVER_params_t parameters = data->parameters;
size_t dictBufferCapacity = data->dictBufferCapacity;
size_t totalCompressedSize = ERROR(GENERIC);
/* Allocate space for hash table, dict, and freqs */
COVER_map_t activeDmers;
BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
U32 *freqs = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
goto _cleanup;
}
if (!dict || !freqs) {
DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
goto _cleanup;
}
/* Copy the frequencies because we need to modify them */
memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
/* Build the dictionary */
{
const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
dictBufferCapacity, parameters);
const ZDICT_params_t zdictParams = COVER_translateParams(parameters);
dictBufferCapacity = ZDICT_finalizeDictionary(
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbSamples, zdictParams);
if (ZDICT_isError(dictBufferCapacity)) {
DISPLAYLEVEL(1, "Failed to finalize dictionary\n");
goto _cleanup;
}
}
/* Check total compressed size */
{
/* Pointers */
ZSTD_CCtx *cctx;
ZSTD_CDict *cdict;
void *dst;
/* Local variables */
size_t dstCapacity;
size_t i;
/* Allocate dst with enough space to compress the maximum sized sample */
{
size_t maxSampleSize = 0;
for (i = 0; i < ctx->nbSamples; ++i) {
maxSampleSize = MAX(ctx->samplesSizes[i], maxSampleSize);
}
dstCapacity = ZSTD_compressBound(maxSampleSize);
dst = malloc(dstCapacity);
}
/* Create the cctx and cdict */
cctx = ZSTD_createCCtx();
cdict =
ZSTD_createCDict(dict, dictBufferCapacity, parameters.compressionLevel);
if (!dst || !cctx || !cdict) {
goto _compressCleanup;
}
/* Compress each sample and sum their sizes (or error) */
totalCompressedSize = 0;
for (i = 0; i < ctx->nbSamples; ++i) {
const size_t size = ZSTD_compress_usingCDict(
cctx, dst, dstCapacity, ctx->samples + ctx->offsets[i],
ctx->samplesSizes[i], cdict);
if (ZSTD_isError(size)) {
totalCompressedSize = ERROR(GENERIC);
goto _compressCleanup;
}
totalCompressedSize += size;
}
_compressCleanup:
ZSTD_freeCCtx(cctx);
ZSTD_freeCDict(cdict);
if (dst) {
free(dst);
}
}
_cleanup:
COVER_best_finish(data->best, totalCompressedSize, parameters, dict,
dictBufferCapacity);
free(data);
COVER_map_destroy(&activeDmers);
if (dict) {
free(dict);
}
if (freqs) {
free(freqs);
}
}
ZDICTLIB_API size_t COVER_optimizeTrainFromBuffer(void *dictBuffer,
size_t dictBufferCapacity,
const void *samplesBuffer,
const size_t *samplesSizes,
unsigned nbSamples,
COVER_params_t *parameters) {
/* constants */
const unsigned nbThreads = parameters->nbThreads;
const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
const unsigned kMaxD = parameters->d == 0 ? 16 : parameters->d;
const unsigned kMinK = parameters->k == 0 ? kMaxD : parameters->k;
const unsigned kMaxK = parameters->k == 0 ? 2048 : parameters->k;
const unsigned kSteps = parameters->steps == 0 ? 32 : parameters->steps;
const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
const unsigned kIterations =
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
/* Local variables */
const int displayLevel = parameters->notificationLevel;
unsigned iteration = 1;
unsigned d;
unsigned k;
COVER_best_t best;
POOL_ctx *pool = NULL;
/* Checks */
if (kMinK < kMaxD || kMaxK < kMinK) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
return ERROR(GENERIC);
}
if (nbSamples == 0) {
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
return ERROR(GENERIC);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
ZDICT_DICTSIZE_MIN);
return ERROR(dstSize_tooSmall);
}
if (nbThreads > 1) {
pool = POOL_create(nbThreads, 1);
if (!pool) {
return ERROR(memory_allocation);
}
}
/* Initialization */
COVER_best_init(&best);
/* Turn down global display level to clean up display at level 2 and below */
g_displayLevel = parameters->notificationLevel - 1;
/* Loop through d first because each new value needs a new context */
LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
kIterations);
for (d = kMinD; d <= kMaxD; d += 2) {
/* Initialize the context for this value of d */
COVER_ctx_t ctx;
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d)) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
COVER_best_destroy(&best);
return ERROR(GENERIC);
}
/* Loop through k reusing the same context */
for (k = kMinK; k <= kMaxK; k += kStepSize) {
/* Prepare the arguments */
COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
sizeof(COVER_tryParameters_data_t));
LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
if (!data) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
COVER_best_destroy(&best);
COVER_ctx_destroy(&ctx);
return ERROR(GENERIC);
}
data->ctx = &ctx;
data->best = &best;
data->dictBufferCapacity = dictBufferCapacity;
data->parameters = *parameters;
data->parameters.k = k;
data->parameters.d = d;
data->parameters.steps = kSteps;
/* Check the parameters */
if (!COVER_checkParameters(data->parameters)) {
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
continue;
}
/* Call the function and pass ownership of data to it */
COVER_best_start(&best);
if (pool) {
POOL_add(pool, &COVER_tryParameters, data);
} else {
COVER_tryParameters(data);
}
/* Print status */
LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
(U32)((iteration * 100) / kIterations));
++iteration;
}
COVER_best_wait(&best);
COVER_ctx_destroy(&ctx);
}
LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
/* Fill the output buffer and parameters with output of the best parameters */
{
const size_t dictSize = best.dictSize;
if (ZSTD_isError(best.compressedSize)) {
COVER_best_destroy(&best);
return best.compressedSize;
}
*parameters = best.parameters;
memcpy(dictBuffer, best.dict, dictSize);
COVER_best_destroy(&best);
POOL_free(pool);
return dictSize;
}
}