##// END OF EJS Templates
largefiles: fix cat of non-largefiles from subdirectory...
largefiles: fix cat of non-largefiles from subdirectory We were calling back to the original commands.cat from inside the walk loop that handled and filtered out largefiles. That did however happen with file paths relative to repo root and the original cat would fail when it applied its own walk and match on top of that. Instead we now duplicate and modify the code from commands.cat and patch it to handle both normal and largefiles. A change in test output shows that this also makes the exit code with largefiles consistent with the normal one in the case where one of several specified files are missing. This also fixes the combination of --output and largefiles.

File last commit:

r16834:cafd8a8f default
r18974:d78a136a default
Show More
treediscovery.py
150 lines | 5.1 KiB | text/x-python | PythonLexer
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 # discovery.py - protocol changeset discovery functions
#
# Copyright 2010 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from node import nullid, short
from i18n import _
Bryan O'Sullivan
util: subclass deque for Python 2.4 backwards compatibility...
r16834 import util, error
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164
def findcommonincoming(repo, remote, heads=None, force=False):
"""Return a tuple (common, fetch, heads) used to identify the common
subset of nodes between repo and remote.
"common" is a list of (at least) the heads of the common subset.
"fetch" is a list of roots of the nodes that would be incoming, to be
supplied to changegroupsubset.
"heads" is either the supplied heads, or else the remote's heads.
"""
m = repo.changelog.nodemap
search = []
fetch = set()
seen = set()
seenbranch = set()
base = set()
if not heads:
heads = remote.heads()
if repo.changelog.tip() == nullid:
base.add(nullid)
if heads != [nullid]:
return [nullid], [nullid], list(heads)
Peter Arrenbrecht
treediscovery: fix regression when run against older repos (issue2793)...
r14199 return [nullid], [], heads
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164
# assume we're closer to the tip than the root
# and start by examining the heads
repo.ui.status(_("searching for changes\n"))
unknown = []
for h in heads:
if h not in m:
unknown.append(h)
else:
base.add(h)
Peter Arrenbrecht
treediscovery: fix regression when run against older repos (issue2793)...
r14199 if not unknown:
return list(base), [], list(heads)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 req = set(unknown)
reqcnt = 0
# search through remote branches
# a 'branch' here is a linear segment of history, with four parts:
# head, root, first parent, second parent
# (a branch always has two parents (or none) by definition)
Bryan O'Sullivan
util: subclass deque for Python 2.4 backwards compatibility...
r16834 unknown = util.deque(remote.branches(unknown))
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 while unknown:
r = []
while unknown:
Bryan O'Sullivan
cleanup: use the deque type where appropriate...
r16803 n = unknown.popleft()
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 if n[0] in seen:
continue
repo.ui.debug("examining %s:%s\n"
% (short(n[0]), short(n[1])))
if n[0] == nullid: # found the end of the branch
pass
elif n in seenbranch:
repo.ui.debug("branch already found\n")
continue
elif n[1] and n[1] in m: # do we know the base?
repo.ui.debug("found incomplete branch %s:%s\n"
% (short(n[0]), short(n[1])))
search.append(n[0:2]) # schedule branch range for scanning
seenbranch.add(n)
else:
if n[1] not in seen and n[1] not in fetch:
if n[2] in m and n[3] in m:
repo.ui.debug("found new changeset %s\n" %
short(n[1]))
fetch.add(n[1]) # earliest unknown
for p in n[2:4]:
if p in m:
base.add(p) # latest known
for p in n[2:4]:
if p not in req and p not in m:
r.append(p)
req.add(p)
seen.add(n[0])
if r:
reqcnt += 1
repo.ui.progress(_('searching'), reqcnt, unit=_('queries'))
repo.ui.debug("request %d: %s\n" %
(reqcnt, " ".join(map(short, r))))
for p in xrange(0, len(r), 10):
for b in remote.branches(r[p:p + 10]):
repo.ui.debug("received %s:%s\n" %
(short(b[0]), short(b[1])))
unknown.append(b)
# do binary search on the branches we found
while search:
newsearch = []
reqcnt += 1
repo.ui.progress(_('searching'), reqcnt, unit=_('queries'))
for n, l in zip(search, remote.between(search)):
l.append(n[1])
p = n[0]
f = 1
for i in l:
repo.ui.debug("narrowing %d:%d %s\n" % (f, len(l), short(i)))
if i in m:
if f <= 2:
repo.ui.debug("found new branch changeset %s\n" %
short(p))
fetch.add(p)
base.add(i)
else:
repo.ui.debug("narrowed branch search to %s:%s\n"
% (short(p), short(i)))
newsearch.append((p, i))
break
p, f = i, f * 2
search = newsearch
# sanity check our fetch list
for f in fetch:
if f in m:
raise error.RepoError(_("already have changeset ")
+ short(f[:4]))
base = list(base)
if base == [nullid]:
if force:
repo.ui.warn(_("warning: repository is unrelated\n"))
else:
raise util.Abort(_("repository is unrelated"))
repo.ui.debug("found new changesets starting at " +
" ".join([short(f) for f in fetch]) + "\n")
repo.ui.progress(_('searching'), None)
repo.ui.debug("%d total queries\n" % reqcnt)
return base, list(fetch), heads