xxhash.c
867 lines
| 28.0 KiB
| text/x-c
|
CLexer
Gregory Szorc
|
r30434 | /* | ||
* xxHash - Fast Hash algorithm | ||||
* Copyright (C) 2012-2016, Yann Collet | ||||
* | ||||
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) | ||||
* | ||||
* Redistribution and use in source and binary forms, with or without | ||||
* modification, are permitted provided that the following conditions are | ||||
* met: | ||||
* | ||||
* * Redistributions of source code must retain the above copyright | ||||
* notice, this list of conditions and the following disclaimer. | ||||
* * Redistributions in binary form must reproduce the above | ||||
* copyright notice, this list of conditions and the following disclaimer | ||||
* in the documentation and/or other materials provided with the | ||||
* distribution. | ||||
* | ||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||||
* | ||||
* You can contact the author at : | ||||
* - xxHash homepage: http://www.xxhash.com | ||||
* - xxHash source repository : https://github.com/Cyan4973/xxHash | ||||
*/ | ||||
/* ************************************* | ||||
* Tuning parameters | ||||
***************************************/ | ||||
/*!XXH_FORCE_MEMORY_ACCESS : | ||||
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. | ||||
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. | ||||
* The below switch allow to select different access method for improved performance. | ||||
* Method 0 (default) : use `memcpy()`. Safe and portable. | ||||
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). | ||||
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. | ||||
* Method 2 : direct access. This method doesn't depend on compiler but violate C standard. | ||||
* It can generate buggy code on targets which do not support unaligned memory accesses. | ||||
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) | ||||
* See http://stackoverflow.com/a/32095106/646947 for details. | ||||
* Prefer these methods in priority order (0 > 1 > 2) | ||||
*/ | ||||
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ | ||||
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) | ||||
# define XXH_FORCE_MEMORY_ACCESS 2 | ||||
# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \ | ||||
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) | ||||
# define XXH_FORCE_MEMORY_ACCESS 1 | ||||
# endif | ||||
#endif | ||||
/*!XXH_ACCEPT_NULL_INPUT_POINTER : | ||||
* If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. | ||||
* When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. | ||||
* By default, this option is disabled. To enable it, uncomment below define : | ||||
*/ | ||||
/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */ | ||||
/*!XXH_FORCE_NATIVE_FORMAT : | ||||
* By default, xxHash library provides endian-independant Hash values, based on little-endian convention. | ||||
* Results are therefore identical for little-endian and big-endian CPU. | ||||
* This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. | ||||
* Should endian-independance be of no importance for your application, you may set the #define below to 1, | ||||
* to improve speed for Big-endian CPU. | ||||
* This option has no impact on Little_Endian CPU. | ||||
*/ | ||||
#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ | ||||
# define XXH_FORCE_NATIVE_FORMAT 0 | ||||
#endif | ||||
/*!XXH_FORCE_ALIGN_CHECK : | ||||
* This is a minor performance trick, only useful with lots of very small keys. | ||||
* It means : check for aligned/unaligned input. | ||||
* The check costs one initial branch per hash; set to 0 when the input data | ||||
* is guaranteed to be aligned. | ||||
*/ | ||||
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ | ||||
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) | ||||
# define XXH_FORCE_ALIGN_CHECK 0 | ||||
# else | ||||
# define XXH_FORCE_ALIGN_CHECK 1 | ||||
# endif | ||||
#endif | ||||
/* ************************************* | ||||
* Includes & Memory related functions | ||||
***************************************/ | ||||
/* Modify the local functions below should you wish to use some other memory routines */ | ||||
/* for malloc(), free() */ | ||||
#include <stdlib.h> | ||||
static void* XXH_malloc(size_t s) { return malloc(s); } | ||||
static void XXH_free (void* p) { free(p); } | ||||
/* for memcpy() */ | ||||
#include <string.h> | ||||
static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } | ||||
#define XXH_STATIC_LINKING_ONLY | ||||
#include "xxhash.h" | ||||
/* ************************************* | ||||
* Compiler Specific Options | ||||
***************************************/ | ||||
#ifdef _MSC_VER /* Visual Studio */ | ||||
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ | ||||
# define FORCE_INLINE static __forceinline | ||||
#else | ||||
# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ | ||||
# ifdef __GNUC__ | ||||
# define FORCE_INLINE static inline __attribute__((always_inline)) | ||||
# else | ||||
# define FORCE_INLINE static inline | ||||
# endif | ||||
# else | ||||
# define FORCE_INLINE static | ||||
# endif /* __STDC_VERSION__ */ | ||||
#endif | ||||
/* ************************************* | ||||
* Basic Types | ||||
***************************************/ | ||||
#ifndef MEM_MODULE | ||||
# define MEM_MODULE | ||||
# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) | ||||
# include <stdint.h> | ||||
typedef uint8_t BYTE; | ||||
typedef uint16_t U16; | ||||
typedef uint32_t U32; | ||||
typedef int32_t S32; | ||||
typedef uint64_t U64; | ||||
# else | ||||
typedef unsigned char BYTE; | ||||
typedef unsigned short U16; | ||||
typedef unsigned int U32; | ||||
typedef signed int S32; | ||||
typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */ | ||||
# endif | ||||
#endif | ||||
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) | ||||
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ | ||||
static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } | ||||
static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } | ||||
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) | ||||
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ | ||||
/* currently only defined for gcc and icc */ | ||||
typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign; | ||||
static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } | ||||
static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } | ||||
#else | ||||
/* portable and safe solution. Generally efficient. | ||||
* see : http://stackoverflow.com/a/32095106/646947 | ||||
*/ | ||||
static U32 XXH_read32(const void* memPtr) | ||||
{ | ||||
U32 val; | ||||
memcpy(&val, memPtr, sizeof(val)); | ||||
return val; | ||||
} | ||||
static U64 XXH_read64(const void* memPtr) | ||||
{ | ||||
U64 val; | ||||
memcpy(&val, memPtr, sizeof(val)); | ||||
return val; | ||||
} | ||||
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ | ||||
/* **************************************** | ||||
* Compiler-specific Functions and Macros | ||||
******************************************/ | ||||
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) | ||||
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ | ||||
#if defined(_MSC_VER) | ||||
# define XXH_rotl32(x,r) _rotl(x,r) | ||||
# define XXH_rotl64(x,r) _rotl64(x,r) | ||||
#else | ||||
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) | ||||
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) | ||||
#endif | ||||
#if defined(_MSC_VER) /* Visual Studio */ | ||||
# define XXH_swap32 _byteswap_ulong | ||||
# define XXH_swap64 _byteswap_uint64 | ||||
#elif GCC_VERSION >= 403 | ||||
# define XXH_swap32 __builtin_bswap32 | ||||
# define XXH_swap64 __builtin_bswap64 | ||||
#else | ||||
static U32 XXH_swap32 (U32 x) | ||||
{ | ||||
return ((x << 24) & 0xff000000 ) | | ||||
((x << 8) & 0x00ff0000 ) | | ||||
((x >> 8) & 0x0000ff00 ) | | ||||
((x >> 24) & 0x000000ff ); | ||||
} | ||||
static U64 XXH_swap64 (U64 x) | ||||
{ | ||||
return ((x << 56) & 0xff00000000000000ULL) | | ||||
((x << 40) & 0x00ff000000000000ULL) | | ||||
((x << 24) & 0x0000ff0000000000ULL) | | ||||
((x << 8) & 0x000000ff00000000ULL) | | ||||
((x >> 8) & 0x00000000ff000000ULL) | | ||||
((x >> 24) & 0x0000000000ff0000ULL) | | ||||
((x >> 40) & 0x000000000000ff00ULL) | | ||||
((x >> 56) & 0x00000000000000ffULL); | ||||
} | ||||
#endif | ||||
/* ************************************* | ||||
* Architecture Macros | ||||
***************************************/ | ||||
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; | ||||
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ | ||||
#ifndef XXH_CPU_LITTLE_ENDIAN | ||||
static const int g_one = 1; | ||||
# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one)) | ||||
#endif | ||||
/* *************************** | ||||
* Memory reads | ||||
*****************************/ | ||||
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; | ||||
FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) | ||||
{ | ||||
if (align==XXH_unaligned) | ||||
return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); | ||||
else | ||||
return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); | ||||
} | ||||
FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) | ||||
{ | ||||
return XXH_readLE32_align(ptr, endian, XXH_unaligned); | ||||
} | ||||
static U32 XXH_readBE32(const void* ptr) | ||||
{ | ||||
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); | ||||
} | ||||
FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) | ||||
{ | ||||
if (align==XXH_unaligned) | ||||
return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); | ||||
else | ||||
return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); | ||||
} | ||||
FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) | ||||
{ | ||||
return XXH_readLE64_align(ptr, endian, XXH_unaligned); | ||||
} | ||||
static U64 XXH_readBE64(const void* ptr) | ||||
{ | ||||
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); | ||||
} | ||||
/* ************************************* | ||||
* Macros | ||||
***************************************/ | ||||
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ | ||||
/* ************************************* | ||||
* Constants | ||||
***************************************/ | ||||
static const U32 PRIME32_1 = 2654435761U; | ||||
static const U32 PRIME32_2 = 2246822519U; | ||||
static const U32 PRIME32_3 = 3266489917U; | ||||
static const U32 PRIME32_4 = 668265263U; | ||||
static const U32 PRIME32_5 = 374761393U; | ||||
static const U64 PRIME64_1 = 11400714785074694791ULL; | ||||
static const U64 PRIME64_2 = 14029467366897019727ULL; | ||||
static const U64 PRIME64_3 = 1609587929392839161ULL; | ||||
static const U64 PRIME64_4 = 9650029242287828579ULL; | ||||
static const U64 PRIME64_5 = 2870177450012600261ULL; | ||||
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } | ||||
/* ************************** | ||||
* Utils | ||||
****************************/ | ||||
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState) | ||||
{ | ||||
memcpy(dstState, srcState, sizeof(*dstState)); | ||||
} | ||||
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState) | ||||
{ | ||||
memcpy(dstState, srcState, sizeof(*dstState)); | ||||
} | ||||
/* *************************** | ||||
* Simple Hash Functions | ||||
*****************************/ | ||||
static U32 XXH32_round(U32 seed, U32 input) | ||||
{ | ||||
seed += input * PRIME32_2; | ||||
seed = XXH_rotl32(seed, 13); | ||||
seed *= PRIME32_1; | ||||
return seed; | ||||
} | ||||
FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align) | ||||
{ | ||||
const BYTE* p = (const BYTE*)input; | ||||
const BYTE* bEnd = p + len; | ||||
U32 h32; | ||||
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) | ||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER | ||||
if (p==NULL) { | ||||
len=0; | ||||
bEnd=p=(const BYTE*)(size_t)16; | ||||
} | ||||
#endif | ||||
if (len>=16) { | ||||
const BYTE* const limit = bEnd - 16; | ||||
U32 v1 = seed + PRIME32_1 + PRIME32_2; | ||||
U32 v2 = seed + PRIME32_2; | ||||
U32 v3 = seed + 0; | ||||
U32 v4 = seed - PRIME32_1; | ||||
do { | ||||
v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; | ||||
v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; | ||||
v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; | ||||
v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; | ||||
} while (p<=limit); | ||||
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); | ||||
} else { | ||||
h32 = seed + PRIME32_5; | ||||
} | ||||
h32 += (U32) len; | ||||
while (p+4<=bEnd) { | ||||
h32 += XXH_get32bits(p) * PRIME32_3; | ||||
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; | ||||
p+=4; | ||||
} | ||||
while (p<bEnd) { | ||||
h32 += (*p) * PRIME32_5; | ||||
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; | ||||
p++; | ||||
} | ||||
h32 ^= h32 >> 15; | ||||
h32 *= PRIME32_2; | ||||
h32 ^= h32 >> 13; | ||||
h32 *= PRIME32_3; | ||||
h32 ^= h32 >> 16; | ||||
return h32; | ||||
} | ||||
XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) | ||||
{ | ||||
#if 0 | ||||
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */ | ||||
XXH32_CREATESTATE_STATIC(state); | ||||
XXH32_reset(state, seed); | ||||
XXH32_update(state, input, len); | ||||
return XXH32_digest(state); | ||||
#else | ||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||||
if (XXH_FORCE_ALIGN_CHECK) { | ||||
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ | ||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||||
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); | ||||
else | ||||
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); | ||||
} } | ||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||||
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); | ||||
else | ||||
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); | ||||
#endif | ||||
} | ||||
static U64 XXH64_round(U64 acc, U64 input) | ||||
{ | ||||
acc += input * PRIME64_2; | ||||
acc = XXH_rotl64(acc, 31); | ||||
acc *= PRIME64_1; | ||||
return acc; | ||||
} | ||||
static U64 XXH64_mergeRound(U64 acc, U64 val) | ||||
{ | ||||
val = XXH64_round(0, val); | ||||
acc ^= val; | ||||
acc = acc * PRIME64_1 + PRIME64_4; | ||||
return acc; | ||||
} | ||||
FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align) | ||||
{ | ||||
const BYTE* p = (const BYTE*)input; | ||||
const BYTE* const bEnd = p + len; | ||||
U64 h64; | ||||
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) | ||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER | ||||
if (p==NULL) { | ||||
len=0; | ||||
bEnd=p=(const BYTE*)(size_t)32; | ||||
} | ||||
#endif | ||||
if (len>=32) { | ||||
const BYTE* const limit = bEnd - 32; | ||||
U64 v1 = seed + PRIME64_1 + PRIME64_2; | ||||
U64 v2 = seed + PRIME64_2; | ||||
U64 v3 = seed + 0; | ||||
U64 v4 = seed - PRIME64_1; | ||||
do { | ||||
v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; | ||||
v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; | ||||
v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; | ||||
v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; | ||||
} while (p<=limit); | ||||
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); | ||||
h64 = XXH64_mergeRound(h64, v1); | ||||
h64 = XXH64_mergeRound(h64, v2); | ||||
h64 = XXH64_mergeRound(h64, v3); | ||||
h64 = XXH64_mergeRound(h64, v4); | ||||
} else { | ||||
h64 = seed + PRIME64_5; | ||||
} | ||||
h64 += (U64) len; | ||||
while (p+8<=bEnd) { | ||||
U64 const k1 = XXH64_round(0, XXH_get64bits(p)); | ||||
h64 ^= k1; | ||||
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; | ||||
p+=8; | ||||
} | ||||
if (p+4<=bEnd) { | ||||
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; | ||||
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; | ||||
p+=4; | ||||
} | ||||
while (p<bEnd) { | ||||
h64 ^= (*p) * PRIME64_5; | ||||
h64 = XXH_rotl64(h64, 11) * PRIME64_1; | ||||
p++; | ||||
} | ||||
h64 ^= h64 >> 33; | ||||
h64 *= PRIME64_2; | ||||
h64 ^= h64 >> 29; | ||||
h64 *= PRIME64_3; | ||||
h64 ^= h64 >> 32; | ||||
return h64; | ||||
} | ||||
XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) | ||||
{ | ||||
#if 0 | ||||
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */ | ||||
XXH64_CREATESTATE_STATIC(state); | ||||
XXH64_reset(state, seed); | ||||
XXH64_update(state, input, len); | ||||
return XXH64_digest(state); | ||||
#else | ||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||||
if (XXH_FORCE_ALIGN_CHECK) { | ||||
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ | ||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||||
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); | ||||
else | ||||
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); | ||||
} } | ||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||||
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); | ||||
else | ||||
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); | ||||
#endif | ||||
} | ||||
/* ************************************************** | ||||
* Advanced Hash Functions | ||||
****************************************************/ | ||||
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) | ||||
{ | ||||
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); | ||||
} | ||||
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) | ||||
{ | ||||
XXH_free(statePtr); | ||||
return XXH_OK; | ||||
} | ||||
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) | ||||
{ | ||||
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); | ||||
} | ||||
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) | ||||
{ | ||||
XXH_free(statePtr); | ||||
return XXH_OK; | ||||
} | ||||
/*** Hash feed ***/ | ||||
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) | ||||
{ | ||||
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ | ||||
memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */ | ||||
state.v1 = seed + PRIME32_1 + PRIME32_2; | ||||
state.v2 = seed + PRIME32_2; | ||||
state.v3 = seed + 0; | ||||
state.v4 = seed - PRIME32_1; | ||||
memcpy(statePtr, &state, sizeof(state)); | ||||
return XXH_OK; | ||||
} | ||||
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) | ||||
{ | ||||
XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ | ||||
memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */ | ||||
state.v1 = seed + PRIME64_1 + PRIME64_2; | ||||
state.v2 = seed + PRIME64_2; | ||||
state.v3 = seed + 0; | ||||
state.v4 = seed - PRIME64_1; | ||||
memcpy(statePtr, &state, sizeof(state)); | ||||
return XXH_OK; | ||||
} | ||||
FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) | ||||
{ | ||||
const BYTE* p = (const BYTE*)input; | ||||
const BYTE* const bEnd = p + len; | ||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER | ||||
if (input==NULL) return XXH_ERROR; | ||||
#endif | ||||
state->total_len_32 += (unsigned)len; | ||||
state->large_len |= (len>=16) | (state->total_len_32>=16); | ||||
if (state->memsize + len < 16) { /* fill in tmp buffer */ | ||||
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); | ||||
state->memsize += (unsigned)len; | ||||
return XXH_OK; | ||||
} | ||||
if (state->memsize) { /* some data left from previous update */ | ||||
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); | ||||
{ const U32* p32 = state->mem32; | ||||
state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; | ||||
state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; | ||||
state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; | ||||
state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++; | ||||
} | ||||
p += 16-state->memsize; | ||||
state->memsize = 0; | ||||
} | ||||
if (p <= bEnd-16) { | ||||
const BYTE* const limit = bEnd - 16; | ||||
U32 v1 = state->v1; | ||||
U32 v2 = state->v2; | ||||
U32 v3 = state->v3; | ||||
U32 v4 = state->v4; | ||||
do { | ||||
v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; | ||||
v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; | ||||
v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; | ||||
v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; | ||||
} while (p<=limit); | ||||
state->v1 = v1; | ||||
state->v2 = v2; | ||||
state->v3 = v3; | ||||
state->v4 = v4; | ||||
} | ||||
if (p < bEnd) { | ||||
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); | ||||
state->memsize = (unsigned)(bEnd-p); | ||||
} | ||||
return XXH_OK; | ||||
} | ||||
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) | ||||
{ | ||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||||
return XXH32_update_endian(state_in, input, len, XXH_littleEndian); | ||||
else | ||||
return XXH32_update_endian(state_in, input, len, XXH_bigEndian); | ||||
} | ||||
FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) | ||||
{ | ||||
const BYTE * p = (const BYTE*)state->mem32; | ||||
const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize; | ||||
U32 h32; | ||||
if (state->large_len) { | ||||
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); | ||||
} else { | ||||
h32 = state->v3 /* == seed */ + PRIME32_5; | ||||
} | ||||
h32 += state->total_len_32; | ||||
while (p+4<=bEnd) { | ||||
h32 += XXH_readLE32(p, endian) * PRIME32_3; | ||||
h32 = XXH_rotl32(h32, 17) * PRIME32_4; | ||||
p+=4; | ||||
} | ||||
while (p<bEnd) { | ||||
h32 += (*p) * PRIME32_5; | ||||
h32 = XXH_rotl32(h32, 11) * PRIME32_1; | ||||
p++; | ||||
} | ||||
h32 ^= h32 >> 15; | ||||
h32 *= PRIME32_2; | ||||
h32 ^= h32 >> 13; | ||||
h32 *= PRIME32_3; | ||||
h32 ^= h32 >> 16; | ||||
return h32; | ||||
} | ||||
XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) | ||||
{ | ||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||||
return XXH32_digest_endian(state_in, XXH_littleEndian); | ||||
else | ||||
return XXH32_digest_endian(state_in, XXH_bigEndian); | ||||
} | ||||
/* **** XXH64 **** */ | ||||
FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) | ||||
{ | ||||
const BYTE* p = (const BYTE*)input; | ||||
const BYTE* const bEnd = p + len; | ||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER | ||||
if (input==NULL) return XXH_ERROR; | ||||
#endif | ||||
state->total_len += len; | ||||
if (state->memsize + len < 32) { /* fill in tmp buffer */ | ||||
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); | ||||
state->memsize += (U32)len; | ||||
return XXH_OK; | ||||
} | ||||
if (state->memsize) { /* tmp buffer is full */ | ||||
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); | ||||
state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); | ||||
state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); | ||||
state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); | ||||
state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); | ||||
p += 32-state->memsize; | ||||
state->memsize = 0; | ||||
} | ||||
if (p+32 <= bEnd) { | ||||
const BYTE* const limit = bEnd - 32; | ||||
U64 v1 = state->v1; | ||||
U64 v2 = state->v2; | ||||
U64 v3 = state->v3; | ||||
U64 v4 = state->v4; | ||||
do { | ||||
v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; | ||||
v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; | ||||
v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; | ||||
v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; | ||||
} while (p<=limit); | ||||
state->v1 = v1; | ||||
state->v2 = v2; | ||||
state->v3 = v3; | ||||
state->v4 = v4; | ||||
} | ||||
if (p < bEnd) { | ||||
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); | ||||
state->memsize = (unsigned)(bEnd-p); | ||||
} | ||||
return XXH_OK; | ||||
} | ||||
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) | ||||
{ | ||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||||
return XXH64_update_endian(state_in, input, len, XXH_littleEndian); | ||||
else | ||||
return XXH64_update_endian(state_in, input, len, XXH_bigEndian); | ||||
} | ||||
FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) | ||||
{ | ||||
const BYTE * p = (const BYTE*)state->mem64; | ||||
const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize; | ||||
U64 h64; | ||||
if (state->total_len >= 32) { | ||||
U64 const v1 = state->v1; | ||||
U64 const v2 = state->v2; | ||||
U64 const v3 = state->v3; | ||||
U64 const v4 = state->v4; | ||||
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); | ||||
h64 = XXH64_mergeRound(h64, v1); | ||||
h64 = XXH64_mergeRound(h64, v2); | ||||
h64 = XXH64_mergeRound(h64, v3); | ||||
h64 = XXH64_mergeRound(h64, v4); | ||||
} else { | ||||
h64 = state->v3 + PRIME64_5; | ||||
} | ||||
h64 += (U64) state->total_len; | ||||
while (p+8<=bEnd) { | ||||
U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian)); | ||||
h64 ^= k1; | ||||
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; | ||||
p+=8; | ||||
} | ||||
if (p+4<=bEnd) { | ||||
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; | ||||
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; | ||||
p+=4; | ||||
} | ||||
while (p<bEnd) { | ||||
h64 ^= (*p) * PRIME64_5; | ||||
h64 = XXH_rotl64(h64, 11) * PRIME64_1; | ||||
p++; | ||||
} | ||||
h64 ^= h64 >> 33; | ||||
h64 *= PRIME64_2; | ||||
h64 ^= h64 >> 29; | ||||
h64 *= PRIME64_3; | ||||
h64 ^= h64 >> 32; | ||||
return h64; | ||||
} | ||||
XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) | ||||
{ | ||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; | ||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) | ||||
return XXH64_digest_endian(state_in, XXH_littleEndian); | ||||
else | ||||
return XXH64_digest_endian(state_in, XXH_bigEndian); | ||||
} | ||||
/* ************************** | ||||
* Canonical representation | ||||
****************************/ | ||||
/*! Default XXH result types are basic unsigned 32 and 64 bits. | ||||
* The canonical representation follows human-readable write convention, aka big-endian (large digits first). | ||||
* These functions allow transformation of hash result into and from its canonical format. | ||||
* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs. | ||||
*/ | ||||
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) | ||||
{ | ||||
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); | ||||
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); | ||||
memcpy(dst, &hash, sizeof(*dst)); | ||||
} | ||||
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) | ||||
{ | ||||
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); | ||||
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); | ||||
memcpy(dst, &hash, sizeof(*dst)); | ||||
} | ||||
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) | ||||
{ | ||||
return XXH_readBE32(src); | ||||
} | ||||
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) | ||||
{ | ||||
return XXH_readBE64(src); | ||||
} | ||||