##// END OF EJS Templates
typing: make the localrepo classes known to pytype...
typing: make the localrepo classes known to pytype 9d4ad05bc91c and 1b17309cdaab both mentioned making `bundlerepository` and `unionrepository` subclass `localrepository` during the type checking phase, but that didn't apply to pytype in practice. See bcaa5d408657 and friends for how the zope interfaces confuse pytype, and end up converting the classes they decorate into `Any`. This commit is slightly more complex though, because `localrepository` has mixin classes applied to it when it is instantiated. Specifically, `RevlogFileStorage` is added, which adds `def file(f)` (which isn't defined on `localrepository`). Therefore a list of `localrepository` superclasses is provided during type checking to account for the mixins. Without this, the `bundlerepository` class gets flagged when it attempts to call its superclass implementation of `file()`. Note that pytype doesn't understand these mixin superclasses (it marks the superclass of `localrepository` as `Any`, because they are zope interfaces it doesn't understand), but that's enough to get it to not flag `bundlerepository`. PyCharm also stops flagging it as a missing function, though it seems like it is able to handle the zope interfaces.

File last commit:

r50538:e1c586b9 default
r52788:ee7e106b default
Show More
_cmp.py
155 lines | 4.0 KiB | text/x-python | PythonLexer
Matt Harbison
attr: vendor 22.1.0...
r50538 # SPDX-License-Identifier: MIT
import functools
import types
from ._make import _make_ne
_operation_names = {"eq": "==", "lt": "<", "le": "<=", "gt": ">", "ge": ">="}
def cmp_using(
eq=None,
lt=None,
le=None,
gt=None,
ge=None,
require_same_type=True,
class_name="Comparable",
):
"""
Create a class that can be passed into `attr.ib`'s ``eq``, ``order``, and
``cmp`` arguments to customize field comparison.
The resulting class will have a full set of ordering methods if
at least one of ``{lt, le, gt, ge}`` and ``eq`` are provided.
:param Optional[callable] eq: `callable` used to evaluate equality
of two objects.
:param Optional[callable] lt: `callable` used to evaluate whether
one object is less than another object.
:param Optional[callable] le: `callable` used to evaluate whether
one object is less than or equal to another object.
:param Optional[callable] gt: `callable` used to evaluate whether
one object is greater than another object.
:param Optional[callable] ge: `callable` used to evaluate whether
one object is greater than or equal to another object.
:param bool require_same_type: When `True`, equality and ordering methods
will return `NotImplemented` if objects are not of the same type.
:param Optional[str] class_name: Name of class. Defaults to 'Comparable'.
See `comparison` for more details.
.. versionadded:: 21.1.0
"""
body = {
"__slots__": ["value"],
"__init__": _make_init(),
"_requirements": [],
"_is_comparable_to": _is_comparable_to,
}
# Add operations.
num_order_functions = 0
has_eq_function = False
if eq is not None:
has_eq_function = True
body["__eq__"] = _make_operator("eq", eq)
body["__ne__"] = _make_ne()
if lt is not None:
num_order_functions += 1
body["__lt__"] = _make_operator("lt", lt)
if le is not None:
num_order_functions += 1
body["__le__"] = _make_operator("le", le)
if gt is not None:
num_order_functions += 1
body["__gt__"] = _make_operator("gt", gt)
if ge is not None:
num_order_functions += 1
body["__ge__"] = _make_operator("ge", ge)
type_ = types.new_class(
class_name, (object,), {}, lambda ns: ns.update(body)
)
# Add same type requirement.
if require_same_type:
type_._requirements.append(_check_same_type)
# Add total ordering if at least one operation was defined.
if 0 < num_order_functions < 4:
if not has_eq_function:
# functools.total_ordering requires __eq__ to be defined,
# so raise early error here to keep a nice stack.
raise ValueError(
"eq must be define is order to complete ordering from "
"lt, le, gt, ge."
)
type_ = functools.total_ordering(type_)
return type_
def _make_init():
"""
Create __init__ method.
"""
def __init__(self, value):
"""
Initialize object with *value*.
"""
self.value = value
return __init__
def _make_operator(name, func):
"""
Create operator method.
"""
def method(self, other):
if not self._is_comparable_to(other):
return NotImplemented
result = func(self.value, other.value)
if result is NotImplemented:
return NotImplemented
return result
method.__name__ = "__%s__" % (name,)
method.__doc__ = "Return a %s b. Computed by attrs." % (
_operation_names[name],
)
return method
def _is_comparable_to(self, other):
"""
Check whether `other` is comparable to `self`.
"""
for func in self._requirements:
if not func(self, other):
return False
return True
def _check_same_type(self, other):
"""
Return True if *self* and *other* are of the same type, False otherwise.
"""
return other.value.__class__ is self.value.__class__