##// END OF EJS Templates
xdiff: fix builds on Windows...
Matt Harbison -
r36741:1f9bbd1d default
parent child Browse files
Show More
@@ -1,1090 +1,1094
1 1 /*
2 2 * LibXDiff by Davide Libenzi ( File Differential Library )
3 3 * Copyright (C) 2003 Davide Libenzi
4 4 *
5 5 * This library is free software; you can redistribute it and/or
6 6 * modify it under the terms of the GNU Lesser General Public
7 7 * License as published by the Free Software Foundation; either
8 8 * version 2.1 of the License, or (at your option) any later version.
9 9 *
10 10 * This library is distributed in the hope that it will be useful,
11 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 13 * Lesser General Public License for more details.
14 14 *
15 15 * You should have received a copy of the GNU Lesser General Public
16 16 * License along with this library; if not, see
17 17 * <http://www.gnu.org/licenses/>.
18 18 *
19 19 * Davide Libenzi <davidel@xmailserver.org>
20 20 *
21 21 */
22 22
23 23 #include "xinclude.h"
24 24
25 25
26 26
27 27 #define XDL_MAX_COST_MIN 256
28 28 #define XDL_HEUR_MIN_COST 256
29 29 #define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1)
30 30 #define XDL_SNAKE_CNT 20
31 31 #define XDL_K_HEUR 4
32 32
33 /* VC 2008 doesn't know about the inline keyword. */
34 #if defined(_MSC_VER)
35 #define inline __forceinline
36 #endif
33 37
34 38
35 39 typedef struct s_xdpsplit {
36 40 long i1, i2;
37 41 int min_lo, min_hi;
38 42 } xdpsplit_t;
39 43
40 44
41 45
42 46
43 47 static long xdl_split(unsigned long const *ha1, long off1, long lim1,
44 48 unsigned long const *ha2, long off2, long lim2,
45 49 long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
46 50 xdalgoenv_t *xenv);
47 51 static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2);
48 52
49 53
50 54
51 55
52 56
53 57 /*
54 58 * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
55 59 * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
56 60 * the forward diagonal starting from (off1, off2) and the backward diagonal
57 61 * starting from (lim1, lim2). If the K values on the same diagonal crosses
58 62 * returns the furthest point of reach. We might end up having to expensive
59 63 * cases using this algorithm is full, so a little bit of heuristic is needed
60 64 * to cut the search and to return a suboptimal point.
61 65 */
62 66 static long xdl_split(unsigned long const *ha1, long off1, long lim1,
63 67 unsigned long const *ha2, long off2, long lim2,
64 68 long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
65 69 xdalgoenv_t *xenv) {
66 70 long dmin = off1 - lim2, dmax = lim1 - off2;
67 71 long fmid = off1 - off2, bmid = lim1 - lim2;
68 72 long odd = (fmid - bmid) & 1;
69 73 long fmin = fmid, fmax = fmid;
70 74 long bmin = bmid, bmax = bmid;
71 75 long ec, d, i1, i2, prev1, best, dd, v, k;
72 76
73 77 /*
74 78 * Set initial diagonal values for both forward and backward path.
75 79 */
76 80 kvdf[fmid] = off1;
77 81 kvdb[bmid] = lim1;
78 82
79 83 for (ec = 1;; ec++) {
80 84 int got_snake = 0;
81 85
82 86 /*
83 87 * We need to extent the diagonal "domain" by one. If the next
84 88 * values exits the box boundaries we need to change it in the
85 89 * opposite direction because (max - min) must be a power of two.
86 90 * Also we initialize the external K value to -1 so that we can
87 91 * avoid extra conditions check inside the core loop.
88 92 */
89 93 if (fmin > dmin)
90 94 kvdf[--fmin - 1] = -1;
91 95 else
92 96 ++fmin;
93 97 if (fmax < dmax)
94 98 kvdf[++fmax + 1] = -1;
95 99 else
96 100 --fmax;
97 101
98 102 for (d = fmax; d >= fmin; d -= 2) {
99 103 if (kvdf[d - 1] >= kvdf[d + 1])
100 104 i1 = kvdf[d - 1] + 1;
101 105 else
102 106 i1 = kvdf[d + 1];
103 107 prev1 = i1;
104 108 i2 = i1 - d;
105 109 for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++);
106 110 if (i1 - prev1 > xenv->snake_cnt)
107 111 got_snake = 1;
108 112 kvdf[d] = i1;
109 113 if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) {
110 114 spl->i1 = i1;
111 115 spl->i2 = i2;
112 116 spl->min_lo = spl->min_hi = 1;
113 117 return ec;
114 118 }
115 119 }
116 120
117 121 /*
118 122 * We need to extent the diagonal "domain" by one. If the next
119 123 * values exits the box boundaries we need to change it in the
120 124 * opposite direction because (max - min) must be a power of two.
121 125 * Also we initialize the external K value to -1 so that we can
122 126 * avoid extra conditions check inside the core loop.
123 127 */
124 128 if (bmin > dmin)
125 129 kvdb[--bmin - 1] = XDL_LINE_MAX;
126 130 else
127 131 ++bmin;
128 132 if (bmax < dmax)
129 133 kvdb[++bmax + 1] = XDL_LINE_MAX;
130 134 else
131 135 --bmax;
132 136
133 137 for (d = bmax; d >= bmin; d -= 2) {
134 138 if (kvdb[d - 1] < kvdb[d + 1])
135 139 i1 = kvdb[d - 1];
136 140 else
137 141 i1 = kvdb[d + 1] - 1;
138 142 prev1 = i1;
139 143 i2 = i1 - d;
140 144 for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--);
141 145 if (prev1 - i1 > xenv->snake_cnt)
142 146 got_snake = 1;
143 147 kvdb[d] = i1;
144 148 if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) {
145 149 spl->i1 = i1;
146 150 spl->i2 = i2;
147 151 spl->min_lo = spl->min_hi = 1;
148 152 return ec;
149 153 }
150 154 }
151 155
152 156 if (need_min)
153 157 continue;
154 158
155 159 /*
156 160 * If the edit cost is above the heuristic trigger and if
157 161 * we got a good snake, we sample current diagonals to see
158 162 * if some of the, have reached an "interesting" path. Our
159 163 * measure is a function of the distance from the diagonal
160 164 * corner (i1 + i2) penalized with the distance from the
161 165 * mid diagonal itself. If this value is above the current
162 166 * edit cost times a magic factor (XDL_K_HEUR) we consider
163 167 * it interesting.
164 168 */
165 169 if (got_snake && ec > xenv->heur_min) {
166 170 for (best = 0, d = fmax; d >= fmin; d -= 2) {
167 171 dd = d > fmid ? d - fmid: fmid - d;
168 172 i1 = kvdf[d];
169 173 i2 = i1 - d;
170 174 v = (i1 - off1) + (i2 - off2) - dd;
171 175
172 176 if (v > XDL_K_HEUR * ec && v > best &&
173 177 off1 + xenv->snake_cnt <= i1 && i1 < lim1 &&
174 178 off2 + xenv->snake_cnt <= i2 && i2 < lim2) {
175 179 for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++)
176 180 if (k == xenv->snake_cnt) {
177 181 best = v;
178 182 spl->i1 = i1;
179 183 spl->i2 = i2;
180 184 break;
181 185 }
182 186 }
183 187 }
184 188 if (best > 0) {
185 189 spl->min_lo = 1;
186 190 spl->min_hi = 0;
187 191 return ec;
188 192 }
189 193
190 194 for (best = 0, d = bmax; d >= bmin; d -= 2) {
191 195 dd = d > bmid ? d - bmid: bmid - d;
192 196 i1 = kvdb[d];
193 197 i2 = i1 - d;
194 198 v = (lim1 - i1) + (lim2 - i2) - dd;
195 199
196 200 if (v > XDL_K_HEUR * ec && v > best &&
197 201 off1 < i1 && i1 <= lim1 - xenv->snake_cnt &&
198 202 off2 < i2 && i2 <= lim2 - xenv->snake_cnt) {
199 203 for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++)
200 204 if (k == xenv->snake_cnt - 1) {
201 205 best = v;
202 206 spl->i1 = i1;
203 207 spl->i2 = i2;
204 208 break;
205 209 }
206 210 }
207 211 }
208 212 if (best > 0) {
209 213 spl->min_lo = 0;
210 214 spl->min_hi = 1;
211 215 return ec;
212 216 }
213 217 }
214 218
215 219 /*
216 220 * Enough is enough. We spent too much time here and now we collect
217 221 * the furthest reaching path using the (i1 + i2) measure.
218 222 */
219 223 if (ec >= xenv->mxcost) {
220 224 long fbest, fbest1, bbest, bbest1;
221 225
222 226 fbest = fbest1 = -1;
223 227 for (d = fmax; d >= fmin; d -= 2) {
224 228 i1 = XDL_MIN(kvdf[d], lim1);
225 229 i2 = i1 - d;
226 230 if (lim2 < i2)
227 231 i1 = lim2 + d, i2 = lim2;
228 232 if (fbest < i1 + i2) {
229 233 fbest = i1 + i2;
230 234 fbest1 = i1;
231 235 }
232 236 }
233 237
234 238 bbest = bbest1 = XDL_LINE_MAX;
235 239 for (d = bmax; d >= bmin; d -= 2) {
236 240 i1 = XDL_MAX(off1, kvdb[d]);
237 241 i2 = i1 - d;
238 242 if (i2 < off2)
239 243 i1 = off2 + d, i2 = off2;
240 244 if (i1 + i2 < bbest) {
241 245 bbest = i1 + i2;
242 246 bbest1 = i1;
243 247 }
244 248 }
245 249
246 250 if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) {
247 251 spl->i1 = fbest1;
248 252 spl->i2 = fbest - fbest1;
249 253 spl->min_lo = 1;
250 254 spl->min_hi = 0;
251 255 } else {
252 256 spl->i1 = bbest1;
253 257 spl->i2 = bbest - bbest1;
254 258 spl->min_lo = 0;
255 259 spl->min_hi = 1;
256 260 }
257 261 return ec;
258 262 }
259 263 }
260 264 }
261 265
262 266
263 267 /*
264 268 * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
265 269 * the box splitting function. Note that the real job (marking changed lines)
266 270 * is done in the two boundary reaching checks.
267 271 */
268 272 int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1,
269 273 diffdata_t *dd2, long off2, long lim2,
270 274 long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) {
271 275 unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha;
272 276
273 277 /*
274 278 * Shrink the box by walking through each diagonal snake (SW and NE).
275 279 */
276 280 for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++);
277 281 for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--);
278 282
279 283 /*
280 284 * If one dimension is empty, then all records on the other one must
281 285 * be obviously changed.
282 286 */
283 287 if (off1 == lim1) {
284 288 char *rchg2 = dd2->rchg;
285 289 long *rindex2 = dd2->rindex;
286 290
287 291 for (; off2 < lim2; off2++)
288 292 rchg2[rindex2[off2]] = 1;
289 293 } else if (off2 == lim2) {
290 294 char *rchg1 = dd1->rchg;
291 295 long *rindex1 = dd1->rindex;
292 296
293 297 for (; off1 < lim1; off1++)
294 298 rchg1[rindex1[off1]] = 1;
295 299 } else {
296 300 xdpsplit_t spl;
297 301 spl.i1 = spl.i2 = 0;
298 302
299 303 /*
300 304 * Divide ...
301 305 */
302 306 if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb,
303 307 need_min, &spl, xenv) < 0) {
304 308
305 309 return -1;
306 310 }
307 311
308 312 /*
309 313 * ... et Impera.
310 314 */
311 315 if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2,
312 316 kvdf, kvdb, spl.min_lo, xenv) < 0 ||
313 317 xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2,
314 318 kvdf, kvdb, spl.min_hi, xenv) < 0) {
315 319
316 320 return -1;
317 321 }
318 322 }
319 323
320 324 return 0;
321 325 }
322 326
323 327
324 328 int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
325 329 xdfenv_t *xe) {
326 330 long ndiags;
327 331 long *kvd, *kvdf, *kvdb;
328 332 xdalgoenv_t xenv;
329 333 diffdata_t dd1, dd2;
330 334
331 335 if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) {
332 336
333 337 return -1;
334 338 }
335 339
336 340 /*
337 341 * Allocate and setup K vectors to be used by the differential algorithm.
338 342 * One is to store the forward path and one to store the backward path.
339 343 */
340 344 ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3;
341 345 if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) {
342 346
343 347 xdl_free_env(xe);
344 348 return -1;
345 349 }
346 350 kvdf = kvd;
347 351 kvdb = kvdf + ndiags;
348 352 kvdf += xe->xdf2.nreff + 1;
349 353 kvdb += xe->xdf2.nreff + 1;
350 354
351 355 xenv.mxcost = xdl_bogosqrt(ndiags);
352 356 if (xenv.mxcost < XDL_MAX_COST_MIN)
353 357 xenv.mxcost = XDL_MAX_COST_MIN;
354 358 xenv.snake_cnt = XDL_SNAKE_CNT;
355 359 xenv.heur_min = XDL_HEUR_MIN_COST;
356 360
357 361 dd1.nrec = xe->xdf1.nreff;
358 362 dd1.ha = xe->xdf1.ha;
359 363 dd1.rchg = xe->xdf1.rchg;
360 364 dd1.rindex = xe->xdf1.rindex;
361 365 dd2.nrec = xe->xdf2.nreff;
362 366 dd2.ha = xe->xdf2.ha;
363 367 dd2.rchg = xe->xdf2.rchg;
364 368 dd2.rindex = xe->xdf2.rindex;
365 369
366 370 if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec,
367 371 kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) {
368 372
369 373 xdl_free(kvd);
370 374 xdl_free_env(xe);
371 375 return -1;
372 376 }
373 377
374 378 xdl_free(kvd);
375 379
376 380 return 0;
377 381 }
378 382
379 383
380 384 static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) {
381 385 xdchange_t *xch;
382 386
383 387 if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t))))
384 388 return NULL;
385 389
386 390 xch->next = xscr;
387 391 xch->i1 = i1;
388 392 xch->i2 = i2;
389 393 xch->chg1 = chg1;
390 394 xch->chg2 = chg2;
391 395 xch->ignore = 0;
392 396
393 397 return xch;
394 398 }
395 399
396 400
397 401 static int recs_match(xrecord_t *rec1, xrecord_t *rec2, long flags)
398 402 {
399 403 return (rec1->ha == rec2->ha &&
400 404 xdl_recmatch(rec1->ptr, rec1->size,
401 405 rec2->ptr, rec2->size,
402 406 flags));
403 407 }
404 408
405 409 /*
406 410 * If a line is indented more than this, get_indent() just returns this value.
407 411 * This avoids having to do absurd amounts of work for data that are not
408 412 * human-readable text, and also ensures that the output of get_indent fits within
409 413 * an int.
410 414 */
411 415 #define MAX_INDENT 200
412 416
413 417 /*
414 418 * Return the amount of indentation of the specified line, treating TAB as 8
415 419 * columns. Return -1 if line is empty or contains only whitespace. Clamp the
416 420 * output value at MAX_INDENT.
417 421 */
418 422 static int get_indent(xrecord_t *rec)
419 423 {
420 424 long i;
421 425 int ret = 0;
422 426
423 427 for (i = 0; i < rec->size; i++) {
424 428 char c = rec->ptr[i];
425 429
426 430 if (!XDL_ISSPACE(c))
427 431 return ret;
428 432 else if (c == ' ')
429 433 ret += 1;
430 434 else if (c == '\t')
431 435 ret += 8 - ret % 8;
432 436 /* ignore other whitespace characters */
433 437
434 438 if (ret >= MAX_INDENT)
435 439 return MAX_INDENT;
436 440 }
437 441
438 442 /* The line contains only whitespace. */
439 443 return -1;
440 444 }
441 445
442 446 /*
443 447 * If more than this number of consecutive blank rows are found, just return this
444 448 * value. This avoids requiring O(N^2) work for pathological cases, and also
445 449 * ensures that the output of score_split fits in an int.
446 450 */
447 451 #define MAX_BLANKS 20
448 452
449 453 /* Characteristics measured about a hypothetical split position. */
450 454 struct split_measurement {
451 455 /*
452 456 * Is the split at the end of the file (aside from any blank lines)?
453 457 */
454 458 int end_of_file;
455 459
456 460 /*
457 461 * How much is the line immediately following the split indented (or -1 if
458 462 * the line is blank):
459 463 */
460 464 int indent;
461 465
462 466 /*
463 467 * How many consecutive lines above the split are blank?
464 468 */
465 469 int pre_blank;
466 470
467 471 /*
468 472 * How much is the nearest non-blank line above the split indented (or -1
469 473 * if there is no such line)?
470 474 */
471 475 int pre_indent;
472 476
473 477 /*
474 478 * How many lines after the line following the split are blank?
475 479 */
476 480 int post_blank;
477 481
478 482 /*
479 483 * How much is the nearest non-blank line after the line following the
480 484 * split indented (or -1 if there is no such line)?
481 485 */
482 486 int post_indent;
483 487 };
484 488
485 489 struct split_score {
486 490 /* The effective indent of this split (smaller is preferred). */
487 491 int effective_indent;
488 492
489 493 /* Penalty for this split (smaller is preferred). */
490 494 int penalty;
491 495 };
492 496
493 497 /*
494 498 * Fill m with information about a hypothetical split of xdf above line split.
495 499 */
496 500 static void measure_split(const xdfile_t *xdf, long split,
497 501 struct split_measurement *m)
498 502 {
499 503 long i;
500 504
501 505 if (split >= xdf->nrec) {
502 506 m->end_of_file = 1;
503 507 m->indent = -1;
504 508 } else {
505 509 m->end_of_file = 0;
506 510 m->indent = get_indent(xdf->recs[split]);
507 511 }
508 512
509 513 m->pre_blank = 0;
510 514 m->pre_indent = -1;
511 515 for (i = split - 1; i >= 0; i--) {
512 516 m->pre_indent = get_indent(xdf->recs[i]);
513 517 if (m->pre_indent != -1)
514 518 break;
515 519 m->pre_blank += 1;
516 520 if (m->pre_blank == MAX_BLANKS) {
517 521 m->pre_indent = 0;
518 522 break;
519 523 }
520 524 }
521 525
522 526 m->post_blank = 0;
523 527 m->post_indent = -1;
524 528 for (i = split + 1; i < xdf->nrec; i++) {
525 529 m->post_indent = get_indent(xdf->recs[i]);
526 530 if (m->post_indent != -1)
527 531 break;
528 532 m->post_blank += 1;
529 533 if (m->post_blank == MAX_BLANKS) {
530 534 m->post_indent = 0;
531 535 break;
532 536 }
533 537 }
534 538 }
535 539
536 540 /*
537 541 * The empirically-determined weight factors used by score_split() below.
538 542 * Larger values means that the position is a less favorable place to split.
539 543 *
540 544 * Note that scores are only ever compared against each other, so multiplying
541 545 * all of these weight/penalty values by the same factor wouldn't change the
542 546 * heuristic's behavior. Still, we need to set that arbitrary scale *somehow*.
543 547 * In practice, these numbers are chosen to be large enough that they can be
544 548 * adjusted relative to each other with sufficient precision despite using
545 549 * integer math.
546 550 */
547 551
548 552 /* Penalty if there are no non-blank lines before the split */
549 553 #define START_OF_FILE_PENALTY 1
550 554
551 555 /* Penalty if there are no non-blank lines after the split */
552 556 #define END_OF_FILE_PENALTY 21
553 557
554 558 /* Multiplier for the number of blank lines around the split */
555 559 #define TOTAL_BLANK_WEIGHT (-30)
556 560
557 561 /* Multiplier for the number of blank lines after the split */
558 562 #define POST_BLANK_WEIGHT 6
559 563
560 564 /*
561 565 * Penalties applied if the line is indented more than its predecessor
562 566 */
563 567 #define RELATIVE_INDENT_PENALTY (-4)
564 568 #define RELATIVE_INDENT_WITH_BLANK_PENALTY 10
565 569
566 570 /*
567 571 * Penalties applied if the line is indented less than both its predecessor and
568 572 * its successor
569 573 */
570 574 #define RELATIVE_OUTDENT_PENALTY 24
571 575 #define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17
572 576
573 577 /*
574 578 * Penalties applied if the line is indented less than its predecessor but not
575 579 * less than its successor
576 580 */
577 581 #define RELATIVE_DEDENT_PENALTY 23
578 582 #define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17
579 583
580 584 /*
581 585 * We only consider whether the sum of the effective indents for splits are
582 586 * less than (-1), equal to (0), or greater than (+1) each other. The resulting
583 587 * value is multiplied by the following weight and combined with the penalty to
584 588 * determine the better of two scores.
585 589 */
586 590 #define INDENT_WEIGHT 60
587 591
588 592 /*
589 593 * Compute a badness score for the hypothetical split whose measurements are
590 594 * stored in m. The weight factors were determined empirically using the tools and
591 595 * corpus described in
592 596 *
593 597 * https://github.com/mhagger/diff-slider-tools
594 598 *
595 599 * Also see that project if you want to improve the weights based on, for example,
596 600 * a larger or more diverse corpus.
597 601 */
598 602 static void score_add_split(const struct split_measurement *m, struct split_score *s)
599 603 {
600 604 /*
601 605 * A place to accumulate penalty factors (positive makes this index more
602 606 * favored):
603 607 */
604 608 int post_blank, total_blank, indent, any_blanks;
605 609
606 610 if (m->pre_indent == -1 && m->pre_blank == 0)
607 611 s->penalty += START_OF_FILE_PENALTY;
608 612
609 613 if (m->end_of_file)
610 614 s->penalty += END_OF_FILE_PENALTY;
611 615
612 616 /*
613 617 * Set post_blank to the number of blank lines following the split,
614 618 * including the line immediately after the split:
615 619 */
616 620 post_blank = (m->indent == -1) ? 1 + m->post_blank : 0;
617 621 total_blank = m->pre_blank + post_blank;
618 622
619 623 /* Penalties based on nearby blank lines: */
620 624 s->penalty += TOTAL_BLANK_WEIGHT * total_blank;
621 625 s->penalty += POST_BLANK_WEIGHT * post_blank;
622 626
623 627 if (m->indent != -1)
624 628 indent = m->indent;
625 629 else
626 630 indent = m->post_indent;
627 631
628 632 any_blanks = (total_blank != 0);
629 633
630 634 /* Note that the effective indent is -1 at the end of the file: */
631 635 s->effective_indent += indent;
632 636
633 637 if (indent == -1) {
634 638 /* No additional adjustments needed. */
635 639 } else if (m->pre_indent == -1) {
636 640 /* No additional adjustments needed. */
637 641 } else if (indent > m->pre_indent) {
638 642 /*
639 643 * The line is indented more than its predecessor.
640 644 */
641 645 s->penalty += any_blanks ?
642 646 RELATIVE_INDENT_WITH_BLANK_PENALTY :
643 647 RELATIVE_INDENT_PENALTY;
644 648 } else if (indent == m->pre_indent) {
645 649 /*
646 650 * The line has the same indentation level as its predecessor.
647 651 * No additional adjustments needed.
648 652 */
649 653 } else {
650 654 /*
651 655 * The line is indented less than its predecessor. It could be
652 656 * the block terminator of the previous block, but it could
653 657 * also be the start of a new block (e.g., an "else" block, or
654 658 * maybe the previous block didn't have a block terminator).
655 659 * Try to distinguish those cases based on what comes next:
656 660 */
657 661 if (m->post_indent != -1 && m->post_indent > indent) {
658 662 /*
659 663 * The following line is indented more. So it is likely
660 664 * that this line is the start of a block.
661 665 */
662 666 s->penalty += any_blanks ?
663 667 RELATIVE_OUTDENT_WITH_BLANK_PENALTY :
664 668 RELATIVE_OUTDENT_PENALTY;
665 669 } else {
666 670 /*
667 671 * That was probably the end of a block.
668 672 */
669 673 s->penalty += any_blanks ?
670 674 RELATIVE_DEDENT_WITH_BLANK_PENALTY :
671 675 RELATIVE_DEDENT_PENALTY;
672 676 }
673 677 }
674 678 }
675 679
676 680 static int score_cmp(struct split_score *s1, struct split_score *s2)
677 681 {
678 682 /* -1 if s1.effective_indent < s2->effective_indent, etc. */
679 683 int cmp_indents = ((s1->effective_indent > s2->effective_indent) -
680 684 (s1->effective_indent < s2->effective_indent));
681 685
682 686 return INDENT_WEIGHT * cmp_indents + (s1->penalty - s2->penalty);
683 687 }
684 688
685 689 /*
686 690 * Represent a group of changed lines in an xdfile_t (i.e., a contiguous group
687 691 * of lines that was inserted or deleted from the corresponding version of the
688 692 * file). We consider there to be such a group at the beginning of the file, at
689 693 * the end of the file, and between any two unchanged lines, though most such
690 694 * groups will usually be empty.
691 695 *
692 696 * If the first line in a group is equal to the line following the group, then
693 697 * the group can be slid down. Similarly, if the last line in a group is equal
694 698 * to the line preceding the group, then the group can be slid up. See
695 699 * group_slide_down() and group_slide_up().
696 700 *
697 701 * Note that loops that are testing for changed lines in xdf->rchg do not need
698 702 * index bounding since the array is prepared with a zero at position -1 and N.
699 703 */
700 704 struct xdlgroup {
701 705 /*
702 706 * The index of the first changed line in the group, or the index of
703 707 * the unchanged line above which the (empty) group is located.
704 708 */
705 709 long start;
706 710
707 711 /*
708 712 * The index of the first unchanged line after the group. For an empty
709 713 * group, end is equal to start.
710 714 */
711 715 long end;
712 716 };
713 717
714 718 /*
715 719 * Initialize g to point at the first group in xdf.
716 720 */
717 721 static void group_init(xdfile_t *xdf, struct xdlgroup *g)
718 722 {
719 723 g->start = g->end = 0;
720 724 while (xdf->rchg[g->end])
721 725 g->end++;
722 726 }
723 727
724 728 /*
725 729 * Move g to describe the next (possibly empty) group in xdf and return 0. If g
726 730 * is already at the end of the file, do nothing and return -1.
727 731 */
728 732 static inline int group_next(xdfile_t *xdf, struct xdlgroup *g)
729 733 {
730 734 if (g->end == xdf->nrec)
731 735 return -1;
732 736
733 737 g->start = g->end + 1;
734 738 for (g->end = g->start; xdf->rchg[g->end]; g->end++)
735 739 ;
736 740
737 741 return 0;
738 742 }
739 743
740 744 /*
741 745 * Move g to describe the previous (possibly empty) group in xdf and return 0.
742 746 * If g is already at the beginning of the file, do nothing and return -1.
743 747 */
744 748 static inline int group_previous(xdfile_t *xdf, struct xdlgroup *g)
745 749 {
746 750 if (g->start == 0)
747 751 return -1;
748 752
749 753 g->end = g->start - 1;
750 754 for (g->start = g->end; xdf->rchg[g->start - 1]; g->start--)
751 755 ;
752 756
753 757 return 0;
754 758 }
755 759
756 760 /*
757 761 * If g can be slid toward the end of the file, do so, and if it bumps into a
758 762 * following group, expand this group to include it. Return 0 on success or -1
759 763 * if g cannot be slid down.
760 764 */
761 765 static int group_slide_down(xdfile_t *xdf, struct xdlgroup *g, long flags)
762 766 {
763 767 if (g->end < xdf->nrec &&
764 768 recs_match(xdf->recs[g->start], xdf->recs[g->end], flags)) {
765 769 xdf->rchg[g->start++] = 0;
766 770 xdf->rchg[g->end++] = 1;
767 771
768 772 while (xdf->rchg[g->end])
769 773 g->end++;
770 774
771 775 return 0;
772 776 } else {
773 777 return -1;
774 778 }
775 779 }
776 780
777 781 /*
778 782 * If g can be slid toward the beginning of the file, do so, and if it bumps
779 783 * into a previous group, expand this group to include it. Return 0 on success
780 784 * or -1 if g cannot be slid up.
781 785 */
782 786 static int group_slide_up(xdfile_t *xdf, struct xdlgroup *g, long flags)
783 787 {
784 788 if (g->start > 0 &&
785 789 recs_match(xdf->recs[g->start - 1], xdf->recs[g->end - 1], flags)) {
786 790 xdf->rchg[--g->start] = 1;
787 791 xdf->rchg[--g->end] = 0;
788 792
789 793 while (xdf->rchg[g->start - 1])
790 794 g->start--;
791 795
792 796 return 0;
793 797 } else {
794 798 return -1;
795 799 }
796 800 }
797 801
798 802 static void xdl_bug(const char *msg)
799 803 {
800 804 fprintf(stderr, "BUG: %s\n", msg);
801 805 exit(1);
802 806 }
803 807
804 808 /*
805 809 * For indentation heuristic, skip searching for better slide position after
806 810 * checking MAX_BORING lines without finding an improvement. This defends the
807 811 * indentation heuristic logic against pathological cases. The value is not
808 812 * picked scientifically but should be good enough.
809 813 */
810 814 #define MAX_BORING 100
811 815
812 816 /*
813 817 * Move back and forward change groups for a consistent and pretty diff output.
814 818 * This also helps in finding joinable change groups and reducing the diff
815 819 * size.
816 820 */
817 821 int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) {
818 822 struct xdlgroup g, go;
819 823 long earliest_end, end_matching_other;
820 824 long groupsize;
821 825
822 826 group_init(xdf, &g);
823 827 group_init(xdfo, &go);
824 828
825 829 while (1) {
826 830 /* If the group is empty in the to-be-compacted file, skip it: */
827 831 if (g.end == g.start)
828 832 goto next;
829 833
830 834 /*
831 835 * Now shift the change up and then down as far as possible in
832 836 * each direction. If it bumps into any other changes, merge them.
833 837 */
834 838 do {
835 839 groupsize = g.end - g.start;
836 840
837 841 /*
838 842 * Keep track of the last "end" index that causes this
839 843 * group to align with a group of changed lines in the
840 844 * other file. -1 indicates that we haven't found such
841 845 * a match yet:
842 846 */
843 847 end_matching_other = -1;
844 848
845 849 /* Shift the group backward as much as possible: */
846 850 while (!group_slide_up(xdf, &g, flags))
847 851 if (group_previous(xdfo, &go))
848 852 xdl_bug("group sync broken sliding up");
849 853
850 854 /*
851 855 * This is this highest that this group can be shifted.
852 856 * Record its end index:
853 857 */
854 858 earliest_end = g.end;
855 859
856 860 if (go.end > go.start)
857 861 end_matching_other = g.end;
858 862
859 863 /* Now shift the group forward as far as possible: */
860 864 while (1) {
861 865 if (group_slide_down(xdf, &g, flags))
862 866 break;
863 867 if (group_next(xdfo, &go))
864 868 xdl_bug("group sync broken sliding down");
865 869
866 870 if (go.end > go.start)
867 871 end_matching_other = g.end;
868 872 }
869 873 } while (groupsize != g.end - g.start);
870 874
871 875 /*
872 876 * If the group can be shifted, then we can possibly use this
873 877 * freedom to produce a more intuitive diff.
874 878 *
875 879 * The group is currently shifted as far down as possible, so the
876 880 * heuristics below only have to handle upwards shifts.
877 881 */
878 882
879 883 if (g.end == earliest_end) {
880 884 /* no shifting was possible */
881 885 } else if (end_matching_other != -1) {
882 886 /*
883 887 * Move the possibly merged group of changes back to line
884 888 * up with the last group of changes from the other file
885 889 * that it can align with.
886 890 */
887 891 while (go.end == go.start) {
888 892 if (group_slide_up(xdf, &g, flags))
889 893 xdl_bug("match disappeared");
890 894 if (group_previous(xdfo, &go))
891 895 xdl_bug("group sync broken sliding to match");
892 896 }
893 897 } else if (flags & XDF_INDENT_HEURISTIC) {
894 898 /*
895 899 * Indent heuristic: a group of pure add/delete lines
896 900 * implies two splits, one between the end of the "before"
897 901 * context and the start of the group, and another between
898 902 * the end of the group and the beginning of the "after"
899 903 * context. Some splits are aesthetically better and some
900 904 * are worse. We compute a badness "score" for each split,
901 905 * and add the scores for the two splits to define a
902 906 * "score" for each position that the group can be shifted
903 907 * to. Then we pick the shift with the lowest score.
904 908 */
905 909 long shift, best_shift = -1;
906 910 struct split_score best_score;
907 911
908 912 /*
909 913 * This is O(N * MAX_BLANKS) (N = shift-able lines).
910 914 * Even with MAX_BLANKS bounded to a small value, a
911 915 * large N could still make this loop take several
912 916 * times longer than the main diff algorithm. The
913 917 * "boring" value is to help cut down N to something
914 918 * like (MAX_BORING + groupsize).
915 919 *
916 920 * Scan from bottom to top. So we can exit the loop
917 921 * without compromising the assumption "for a same best
918 922 * score, pick the bottommost shift".
919 923 */
920 924 int boring = 0;
921 925 for (shift = g.end; shift >= earliest_end; shift--) {
922 926 struct split_measurement m;
923 927 struct split_score score = {0, 0};
924 928 int cmp;
925 929
926 930 measure_split(xdf, shift, &m);
927 931 score_add_split(&m, &score);
928 932 measure_split(xdf, shift - groupsize, &m);
929 933 score_add_split(&m, &score);
930 934
931 935 if (best_shift == -1) {
932 936 cmp = -1;
933 937 } else {
934 938 cmp = score_cmp(&score, &best_score);
935 939 }
936 940 if (cmp < 0) {
937 941 boring = 0;
938 942 best_score.effective_indent = score.effective_indent;
939 943 best_score.penalty = score.penalty;
940 944 best_shift = shift;
941 945 } else {
942 946 boring += 1;
943 947 if (boring >= MAX_BORING)
944 948 break;
945 949 }
946 950 }
947 951
948 952 while (g.end > best_shift) {
949 953 if (group_slide_up(xdf, &g, flags))
950 954 xdl_bug("best shift unreached");
951 955 if (group_previous(xdfo, &go))
952 956 xdl_bug("group sync broken sliding to blank line");
953 957 }
954 958 }
955 959
956 960 next:
957 961 /* Move past the just-processed group: */
958 962 if (group_next(xdf, &g))
959 963 break;
960 964 if (group_next(xdfo, &go))
961 965 xdl_bug("group sync broken moving to next group");
962 966 }
963 967
964 968 if (!group_next(xdfo, &go))
965 969 xdl_bug("group sync broken at end of file");
966 970
967 971 return 0;
968 972 }
969 973
970 974
971 975 int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) {
972 976 xdchange_t *cscr = NULL, *xch;
973 977 char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg;
974 978 long i1, i2, l1, l2;
975 979
976 980 /*
977 981 * Trivial. Collects "groups" of changes and creates an edit script.
978 982 */
979 983 for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--)
980 984 if (rchg1[i1 - 1] || rchg2[i2 - 1]) {
981 985 for (l1 = i1; rchg1[i1 - 1]; i1--);
982 986 for (l2 = i2; rchg2[i2 - 1]; i2--);
983 987
984 988 if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) {
985 989 xdl_free_script(cscr);
986 990 return -1;
987 991 }
988 992 cscr = xch;
989 993 }
990 994
991 995 *xscr = cscr;
992 996
993 997 return 0;
994 998 }
995 999
996 1000
997 1001 void xdl_free_script(xdchange_t *xscr) {
998 1002 xdchange_t *xch;
999 1003
1000 1004 while ((xch = xscr) != NULL) {
1001 1005 xscr = xscr->next;
1002 1006 xdl_free(xch);
1003 1007 }
1004 1008 }
1005 1009
1006 1010 static int xdl_call_hunk_func(xdfenv_t *xe, xdchange_t *xscr, xdemitcb_t *ecb,
1007 1011 xdemitconf_t const *xecfg)
1008 1012 {
1009 1013 xdchange_t *xch, *xche;
1010 1014 if ((xecfg->flags & XDL_EMIT_BDIFFHUNK) != 0) {
1011 1015 long i1 = 0, i2 = 0, n1 = xe->xdf1.nrec, n2 = xe->xdf2.nrec;
1012 1016 for (xch = xscr; xch; xch = xche->next) {
1013 1017 xche = xdl_get_hunk(&xch, xecfg);
1014 1018 if (!xch)
1015 1019 break;
1016 1020 if (xch->i1 > i1 || xch->i2 > i2) {
1017 1021 if (xecfg->hunk_func(i1, xch->i1, i2, xch->i2, ecb->priv) < 0)
1018 1022 return -1;
1019 1023 }
1020 1024 i1 = xche->i1 + xche->chg1;
1021 1025 i2 = xche->i2 + xche->chg2;
1022 1026 }
1023 1027 if (xecfg->hunk_func(i1, n1, i2, n2, ecb->priv) < 0)
1024 1028 return -1;
1025 1029 } else {
1026 1030 for (xch = xscr; xch; xch = xche->next) {
1027 1031 xche = xdl_get_hunk(&xch, xecfg);
1028 1032 if (!xch)
1029 1033 break;
1030 1034 if (xecfg->hunk_func(
1031 1035 xch->i1, xche->i1 + xche->chg1 - xch->i1,
1032 1036 xch->i2, xche->i2 + xche->chg2 - xch->i2,
1033 1037 ecb->priv) < 0)
1034 1038 return -1;
1035 1039 }
1036 1040 }
1037 1041 return 0;
1038 1042 }
1039 1043
1040 1044 static void xdl_mark_ignorable(xdchange_t *xscr, xdfenv_t *xe, long flags)
1041 1045 {
1042 1046 xdchange_t *xch;
1043 1047
1044 1048 for (xch = xscr; xch; xch = xch->next) {
1045 1049 int ignore = 1;
1046 1050 xrecord_t **rec;
1047 1051 long i;
1048 1052
1049 1053 rec = &xe->xdf1.recs[xch->i1];
1050 1054 for (i = 0; i < xch->chg1 && ignore; i++)
1051 1055 ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
1052 1056
1053 1057 rec = &xe->xdf2.recs[xch->i2];
1054 1058 for (i = 0; i < xch->chg2 && ignore; i++)
1055 1059 ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
1056 1060
1057 1061 xch->ignore = ignore;
1058 1062 }
1059 1063 }
1060 1064
1061 1065 int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
1062 1066 xdemitconf_t const *xecfg, xdemitcb_t *ecb) {
1063 1067 xdchange_t *xscr;
1064 1068 xdfenv_t xe;
1065 1069 emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff;
1066 1070
1067 1071 if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) {
1068 1072
1069 1073 return -1;
1070 1074 }
1071 1075 if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 ||
1072 1076 xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 ||
1073 1077 xdl_build_script(&xe, &xscr) < 0) {
1074 1078
1075 1079 xdl_free_env(&xe);
1076 1080 return -1;
1077 1081 }
1078 1082
1079 1083 if (xpp->flags & XDF_IGNORE_BLANK_LINES)
1080 1084 xdl_mark_ignorable(xscr, &xe, xpp->flags);
1081 1085 if (ef(&xe, xscr, ecb, xecfg) < 0) {
1082 1086 xdl_free_script(xscr);
1083 1087 xdl_free_env(&xe);
1084 1088 return -1;
1085 1089 }
1086 1090 xdl_free_script(xscr);
1087 1091 xdl_free_env(&xe);
1088 1092
1089 1093 return 0;
1090 1094 }
@@ -1,42 +1,41
1 1 /*
2 2 * LibXDiff by Davide Libenzi ( File Differential Library )
3 3 * Copyright (C) 2003 Davide Libenzi
4 4 *
5 5 * This library is free software; you can redistribute it and/or
6 6 * modify it under the terms of the GNU Lesser General Public
7 7 * License as published by the Free Software Foundation; either
8 8 * version 2.1 of the License, or (at your option) any later version.
9 9 *
10 10 * This library is distributed in the hope that it will be useful,
11 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 13 * Lesser General Public License for more details.
14 14 *
15 15 * You should have received a copy of the GNU Lesser General Public
16 16 * License along with this library; if not, see
17 17 * <http://www.gnu.org/licenses/>.
18 18 *
19 19 * Davide Libenzi <davidel@xmailserver.org>
20 20 *
21 21 */
22 22
23 23 #if !defined(XINCLUDE_H)
24 24 #define XINCLUDE_H
25 25
26 26 #include <ctype.h>
27 27 #include <stdio.h>
28 28 #include <stdlib.h>
29 #include <unistd.h>
30 29 #include <string.h>
31 30 #include <limits.h>
32 31
33 32 #include "xmacros.h"
34 33 #include "xdiff.h"
35 34 #include "xtypes.h"
36 35 #include "xutils.h"
37 36 #include "xprepare.h"
38 37 #include "xdiffi.h"
39 38 #include "xemit.h"
40 39
41 40
42 41 #endif /* #if !defined(XINCLUDE_H) */
General Comments 0
You need to be logged in to leave comments. Login now