##// END OF EJS Templates
ancestor: improve description
Matt Mackall -
r13554:22565ddb default
parent child Browse files
Show More
@@ -1,88 +1,91 b''
1 # ancestor.py - generic DAG ancestor algorithm for mercurial
1 # ancestor.py - generic DAG ancestor algorithm for mercurial
2 #
2 #
3 # Copyright 2006 Matt Mackall <mpm@selenic.com>
3 # Copyright 2006 Matt Mackall <mpm@selenic.com>
4 #
4 #
5 # This software may be used and distributed according to the terms of the
5 # This software may be used and distributed according to the terms of the
6 # GNU General Public License version 2 or any later version.
6 # GNU General Public License version 2 or any later version.
7
7
8 import heapq
8 import heapq
9
9
10 def ancestor(a, b, pfunc):
10 def ancestor(a, b, pfunc):
11 """
11 """
12 return a minimal-distance ancestor of nodes a and b, or None if there is no
12 Returns the common ancestor of a and b that is furthest from a
13 such ancestor. Note that there can be several ancestors with the same
13 root (as measured by longest path) or None if no ancestor is
14 (minimal) distance, and the one returned is arbitrary.
14 found. If there are multiple common ancestors at the same
15 distance, the first one found is returned.
15
16
16 pfunc must return a list of parent vertices for a given vertex
17 pfunc must return a list of parent vertices for a given vertex
17 """
18 """
18
19
19 if a == b:
20 if a == b:
20 return a
21 return a
21
22
22 a, b = sorted([a, b])
23 a, b = sorted([a, b])
23
24
24 # find depth from root of all ancestors
25 # find depth from root of all ancestors
26 # depth is stored as a negative for heapq
25 parentcache = {}
27 parentcache = {}
26 visit = [a, b]
28 visit = [a, b]
27 depth = {}
29 depth = {}
28 while visit:
30 while visit:
29 vertex = visit[-1]
31 vertex = visit[-1]
30 pl = pfunc(vertex)
32 pl = pfunc(vertex)
31 parentcache[vertex] = pl
33 parentcache[vertex] = pl
32 if not pl:
34 if not pl:
33 depth[vertex] = 0
35 depth[vertex] = 0
34 visit.pop()
36 visit.pop()
35 else:
37 else:
36 for p in pl:
38 for p in pl:
37 if p == a or p == b: # did we find a or b as a parent?
39 if p == a or p == b: # did we find a or b as a parent?
38 return p # we're done
40 return p # we're done
39 if p not in depth:
41 if p not in depth:
40 visit.append(p)
42 visit.append(p)
41 if visit[-1] == vertex:
43 if visit[-1] == vertex:
44 # -(maximum distance of parents + 1)
42 depth[vertex] = min([depth[p] for p in pl]) - 1
45 depth[vertex] = min([depth[p] for p in pl]) - 1
43 visit.pop()
46 visit.pop()
44
47
45 # traverse ancestors in order of decreasing distance from root
48 # traverse ancestors in order of decreasing distance from root
46 def ancestors(vertex):
49 def ancestors(vertex):
47 h = [(depth[vertex], vertex)]
50 h = [(depth[vertex], vertex)]
48 seen = set()
51 seen = set()
49 while h:
52 while h:
50 d, n = heapq.heappop(h)
53 d, n = heapq.heappop(h)
51 if n not in seen:
54 if n not in seen:
52 seen.add(n)
55 seen.add(n)
53 yield (d, n)
56 yield (d, n)
54 for p in parentcache[n]:
57 for p in parentcache[n]:
55 heapq.heappush(h, (depth[p], p))
58 heapq.heappush(h, (depth[p], p))
56
59
57 def generations(vertex):
60 def generations(vertex):
58 sg, s = None, set()
61 sg, s = None, set()
59 for g, v in ancestors(vertex):
62 for g, v in ancestors(vertex):
60 if g != sg:
63 if g != sg:
61 if sg:
64 if sg:
62 yield sg, s
65 yield sg, s
63 sg, s = g, set((v,))
66 sg, s = g, set((v,))
64 else:
67 else:
65 s.add(v)
68 s.add(v)
66 yield sg, s
69 yield sg, s
67
70
68 x = generations(a)
71 x = generations(a)
69 y = generations(b)
72 y = generations(b)
70 gx = x.next()
73 gx = x.next()
71 gy = y.next()
74 gy = y.next()
72
75
73 # increment each ancestor list until it is closer to root than
76 # increment each ancestor list until it is closer to root than
74 # the other, or they match
77 # the other, or they match
75 try:
78 try:
76 while 1:
79 while 1:
77 if gx[0] == gy[0]:
80 if gx[0] == gy[0]:
78 for v in gx[1]:
81 for v in gx[1]:
79 if v in gy[1]:
82 if v in gy[1]:
80 return v
83 return v
81 gy = y.next()
84 gy = y.next()
82 gx = x.next()
85 gx = x.next()
83 elif gx[0] > gy[0]:
86 elif gx[0] > gy[0]:
84 gy = y.next()
87 gy = y.next()
85 else:
88 else:
86 gx = x.next()
89 gx = x.next()
87 except StopIteration:
90 except StopIteration:
88 return None
91 return None
General Comments 0
You need to be logged in to leave comments. Login now