##// END OF EJS Templates
ancestor: use set instead of dict
Benoit Boissinot -
r8465:23429ebd default
parent child Browse files
Show More
@@ -1,85 +1,85
1 # ancestor.py - generic DAG ancestor algorithm for mercurial
1 # ancestor.py - generic DAG ancestor algorithm for mercurial
2 #
2 #
3 # Copyright 2006 Matt Mackall <mpm@selenic.com>
3 # Copyright 2006 Matt Mackall <mpm@selenic.com>
4 #
4 #
5 # This software may be used and distributed according to the terms of the
5 # This software may be used and distributed according to the terms of the
6 # GNU General Public License version 2, incorporated herein by reference.
6 # GNU General Public License version 2, incorporated herein by reference.
7
7
8 import heapq
8 import heapq
9
9
10 def ancestor(a, b, pfunc):
10 def ancestor(a, b, pfunc):
11 """
11 """
12 return the least common ancestor of nodes a and b or None if there
12 return the least common ancestor of nodes a and b or None if there
13 is no such ancestor.
13 is no such ancestor.
14
14
15 pfunc must return a list of parent vertices
15 pfunc must return a list of parent vertices
16 """
16 """
17
17
18 if a == b:
18 if a == b:
19 return a
19 return a
20
20
21 # find depth from root of all ancestors
21 # find depth from root of all ancestors
22 parentcache = {}
22 parentcache = {}
23 visit = [a, b]
23 visit = [a, b]
24 depth = {}
24 depth = {}
25 while visit:
25 while visit:
26 vertex = visit[-1]
26 vertex = visit[-1]
27 pl = pfunc(vertex)
27 pl = pfunc(vertex)
28 parentcache[vertex] = pl
28 parentcache[vertex] = pl
29 if not pl:
29 if not pl:
30 depth[vertex] = 0
30 depth[vertex] = 0
31 visit.pop()
31 visit.pop()
32 else:
32 else:
33 for p in pl:
33 for p in pl:
34 if p == a or p == b: # did we find a or b as a parent?
34 if p == a or p == b: # did we find a or b as a parent?
35 return p # we're done
35 return p # we're done
36 if p not in depth:
36 if p not in depth:
37 visit.append(p)
37 visit.append(p)
38 if visit[-1] == vertex:
38 if visit[-1] == vertex:
39 depth[vertex] = min([depth[p] for p in pl]) - 1
39 depth[vertex] = min([depth[p] for p in pl]) - 1
40 visit.pop()
40 visit.pop()
41
41
42 # traverse ancestors in order of decreasing distance from root
42 # traverse ancestors in order of decreasing distance from root
43 def ancestors(vertex):
43 def ancestors(vertex):
44 h = [(depth[vertex], vertex)]
44 h = [(depth[vertex], vertex)]
45 seen = {}
45 seen = set()
46 while h:
46 while h:
47 d, n = heapq.heappop(h)
47 d, n = heapq.heappop(h)
48 if n not in seen:
48 if n not in seen:
49 seen[n] = 1
49 seen.add(n)
50 yield (d, n)
50 yield (d, n)
51 for p in parentcache[n]:
51 for p in parentcache[n]:
52 heapq.heappush(h, (depth[p], p))
52 heapq.heappush(h, (depth[p], p))
53
53
54 def generations(vertex):
54 def generations(vertex):
55 sg, s = None, {}
55 sg, s = None, set()
56 for g, v in ancestors(vertex):
56 for g, v in ancestors(vertex):
57 if g != sg:
57 if g != sg:
58 if sg:
58 if sg:
59 yield sg, s
59 yield sg, s
60 sg, s = g, {v:1}
60 sg, s = g, set((v,))
61 else:
61 else:
62 s[v] = 1
62 s.add(v)
63 yield sg, s
63 yield sg, s
64
64
65 x = generations(a)
65 x = generations(a)
66 y = generations(b)
66 y = generations(b)
67 gx = x.next()
67 gx = x.next()
68 gy = y.next()
68 gy = y.next()
69
69
70 # increment each ancestor list until it is closer to root than
70 # increment each ancestor list until it is closer to root than
71 # the other, or they match
71 # the other, or they match
72 try:
72 try:
73 while 1:
73 while 1:
74 if gx[0] == gy[0]:
74 if gx[0] == gy[0]:
75 for v in gx[1]:
75 for v in gx[1]:
76 if v in gy[1]:
76 if v in gy[1]:
77 return v
77 return v
78 gy = y.next()
78 gy = y.next()
79 gx = x.next()
79 gx = x.next()
80 elif gx[0] > gy[0]:
80 elif gx[0] > gy[0]:
81 gy = y.next()
81 gy = y.next()
82 else:
82 else:
83 gx = x.next()
83 gx = x.next()
84 except StopIteration:
84 except StopIteration:
85 return None
85 return None
General Comments 0
You need to be logged in to leave comments. Login now