Show More
@@ -1,68 +1,68 b'' | |||
|
1 | 1 | // Copyright 2018-2020 Georges Racinet <georges.racinet@octobus.net> |
|
2 | 2 | // and Mercurial contributors |
|
3 | 3 | // |
|
4 | 4 | // This software may be used and distributed according to the terms of the |
|
5 | 5 | // GNU General Public License version 2 or any later version. |
|
6 | 6 | //! Mercurial concepts for handling revision history |
|
7 | 7 | |
|
8 | 8 | pub mod node; |
|
9 | 9 | pub mod nodemap; |
|
10 | 10 | mod nodemap_docket; |
|
11 | 11 | pub mod path_encode; |
|
12 |
pub use node::{ |
|
|
12 | pub use node::{FromHexError, Node, NodePrefix, NodePrefixRef}; | |
|
13 | 13 | pub mod changelog; |
|
14 | 14 | pub mod index; |
|
15 | 15 | pub mod manifest; |
|
16 | 16 | pub mod patch; |
|
17 | 17 | pub mod revlog; |
|
18 | 18 | |
|
19 | 19 | /// Mercurial revision numbers |
|
20 | 20 | /// |
|
21 | 21 | /// As noted in revlog.c, revision numbers are actually encoded in |
|
22 | 22 | /// 4 bytes, and are liberally converted to ints, whence the i32 |
|
23 | 23 | pub type Revision = i32; |
|
24 | 24 | |
|
25 | 25 | /// Marker expressing the absence of a parent |
|
26 | 26 | /// |
|
27 | 27 | /// Independently of the actual representation, `NULL_REVISION` is guaranteed |
|
28 | 28 | /// to be smaller than all existing revisions. |
|
29 | 29 | pub const NULL_REVISION: Revision = -1; |
|
30 | 30 | |
|
31 | 31 | /// Same as `mercurial.node.wdirrev` |
|
32 | 32 | /// |
|
33 | 33 | /// This is also equal to `i32::max_value()`, but it's better to spell |
|
34 | 34 | /// it out explicitely, same as in `mercurial.node` |
|
35 | 35 | #[allow(clippy::unreadable_literal)] |
|
36 | 36 | pub const WORKING_DIRECTORY_REVISION: Revision = 0x7fffffff; |
|
37 | 37 | |
|
38 | 38 | /// The simplest expression of what we need of Mercurial DAGs. |
|
39 | 39 | pub trait Graph { |
|
40 | 40 | /// Return the two parents of the given `Revision`. |
|
41 | 41 | /// |
|
42 | 42 | /// Each of the parents can be independently `NULL_REVISION` |
|
43 | 43 | fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError>; |
|
44 | 44 | } |
|
45 | 45 | |
|
46 | 46 | #[derive(Clone, Debug, PartialEq)] |
|
47 | 47 | pub enum GraphError { |
|
48 | 48 | ParentOutOfRange(Revision), |
|
49 | 49 | WorkingDirectoryUnsupported, |
|
50 | 50 | } |
|
51 | 51 | |
|
52 | 52 | /// The Mercurial Revlog Index |
|
53 | 53 | /// |
|
54 | 54 | /// This is currently limited to the minimal interface that is needed for |
|
55 | 55 | /// the [`nodemap`](nodemap/index.html) module |
|
56 | 56 | pub trait RevlogIndex { |
|
57 | 57 | /// Total number of Revisions referenced in this index |
|
58 | 58 | fn len(&self) -> usize; |
|
59 | 59 | |
|
60 | 60 | fn is_empty(&self) -> bool { |
|
61 | 61 | self.len() == 0 |
|
62 | 62 | } |
|
63 | 63 | |
|
64 | 64 | /// Return a reference to the Node or `None` if rev is out of bounds |
|
65 | 65 | /// |
|
66 | 66 | /// `NULL_REVISION` is not considered to be out of bounds. |
|
67 | 67 | fn node(&self, rev: Revision) -> Option<&Node>; |
|
68 | 68 | } |
@@ -1,459 +1,412 b'' | |||
|
1 | 1 | // Copyright 2019-2020 Georges Racinet <georges.racinet@octobus.net> |
|
2 | 2 | // |
|
3 | 3 | // This software may be used and distributed according to the terms of the |
|
4 | 4 | // GNU General Public License version 2 or any later version. |
|
5 | 5 | |
|
6 | 6 | //! Definitions and utilities for Revision nodes |
|
7 | 7 | //! |
|
8 | 8 | //! In Mercurial code base, it is customary to call "a node" the binary SHA |
|
9 | 9 | //! of a revision. |
|
10 | 10 | |
|
11 | 11 | use bytes_cast::BytesCast; |
|
12 |
use hex::{self, FromHex |
|
|
12 | use hex::{self, FromHex}; | |
|
13 | 13 | use std::convert::TryFrom; |
|
14 | 14 | use std::fmt; |
|
15 | 15 | |
|
16 | 16 | /// The length in bytes of a `Node` |
|
17 | 17 | /// |
|
18 | 18 | /// This constant is meant to ease refactors of this module, and |
|
19 | 19 | /// are private so that calling code does not expect all nodes have |
|
20 | 20 | /// the same size, should we support several formats concurrently in |
|
21 | 21 | /// the future. |
|
22 | 22 | pub const NODE_BYTES_LENGTH: usize = 20; |
|
23 | 23 | |
|
24 | 24 | /// Id of the null node. |
|
25 | 25 | /// |
|
26 | 26 | /// Used to indicate the absence of node. |
|
27 | 27 | pub const NULL_NODE_ID: [u8; NODE_BYTES_LENGTH] = [0u8; NODE_BYTES_LENGTH]; |
|
28 | 28 | |
|
29 | 29 | /// The length in bytes of a `Node` |
|
30 | 30 | /// |
|
31 | 31 | /// see also `NODES_BYTES_LENGTH` about it being private. |
|
32 | 32 | const NODE_NYBBLES_LENGTH: usize = 2 * NODE_BYTES_LENGTH; |
|
33 | 33 | |
|
34 | 34 | /// Private alias for readability and to ease future change |
|
35 | 35 | type NodeData = [u8; NODE_BYTES_LENGTH]; |
|
36 | 36 | |
|
37 | 37 | /// Binary revision SHA |
|
38 | 38 | /// |
|
39 | 39 | /// ## Future changes of hash size |
|
40 | 40 | /// |
|
41 | 41 | /// To accomodate future changes of hash size, Rust callers |
|
42 | 42 | /// should use the conversion methods at the boundaries (FFI, actual |
|
43 | 43 | /// computation of hashes and I/O) only, and only if required. |
|
44 | 44 | /// |
|
45 | 45 | /// All other callers outside of unit tests should just handle `Node` values |
|
46 | 46 | /// and never make any assumption on the actual length, using [`nybbles_len`] |
|
47 | 47 | /// if they need a loop boundary. |
|
48 | 48 | /// |
|
49 | 49 | /// All methods that create a `Node` either take a type that enforces |
|
50 | /// the size or fail immediately at runtime with [`ExactLengthRequired`]. | |
|
50 | /// the size or return an error at runtime. | |
|
51 | 51 | /// |
|
52 | 52 | /// [`nybbles_len`]: #method.nybbles_len |
|
53 | /// [`ExactLengthRequired`]: struct.NodeError#variant.ExactLengthRequired | |
|
54 | 53 | #[derive(Clone, Debug, PartialEq, BytesCast)] |
|
55 | 54 | #[repr(transparent)] |
|
56 | 55 | pub struct Node { |
|
57 | 56 | data: NodeData, |
|
58 | 57 | } |
|
59 | 58 | |
|
60 | 59 | /// The node value for NULL_REVISION |
|
61 | 60 | pub const NULL_NODE: Node = Node { |
|
62 | 61 | data: [0; NODE_BYTES_LENGTH], |
|
63 | 62 | }; |
|
64 | 63 | |
|
65 | 64 | impl From<NodeData> for Node { |
|
66 | 65 | fn from(data: NodeData) -> Node { |
|
67 | 66 | Node { data } |
|
68 | 67 | } |
|
69 | 68 | } |
|
70 | 69 | |
|
71 | 70 | /// Return an error if the slice has an unexpected length |
|
72 | 71 | impl<'a> TryFrom<&'a [u8]> for &'a Node { |
|
73 | 72 | type Error = (); |
|
74 | 73 | |
|
75 | 74 | #[inline] |
|
76 | 75 | fn try_from(bytes: &'a [u8]) -> Result<&'a Node, Self::Error> { |
|
77 | 76 | match Node::from_bytes(bytes) { |
|
78 | 77 | Ok((node, rest)) if rest.is_empty() => Ok(node), |
|
79 | 78 | _ => Err(()), |
|
80 | 79 | } |
|
81 | 80 | } |
|
82 | 81 | } |
|
83 | 82 | |
|
84 | 83 | impl fmt::LowerHex for Node { |
|
85 | 84 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
|
86 | 85 | for &byte in &self.data { |
|
87 | 86 | write!(f, "{:02x}", byte)? |
|
88 | 87 | } |
|
89 | 88 | Ok(()) |
|
90 | 89 | } |
|
91 | 90 | } |
|
92 | 91 | |
|
93 |
#[derive(Debug |
|
|
94 | pub enum NodeError { | |
|
95 | ExactLengthRequired(usize, String), | |
|
96 | PrefixTooLong(String), | |
|
97 | HexError(FromHexError, String), | |
|
98 | } | |
|
92 | #[derive(Debug)] | |
|
93 | pub struct FromHexError; | |
|
99 | 94 | |
|
100 | 95 | /// Low level utility function, also for prefixes |
|
101 | 96 | fn get_nybble(s: &[u8], i: usize) -> u8 { |
|
102 | 97 | if i % 2 == 0 { |
|
103 | 98 | s[i / 2] >> 4 |
|
104 | 99 | } else { |
|
105 | 100 | s[i / 2] & 0x0f |
|
106 | 101 | } |
|
107 | 102 | } |
|
108 | 103 | |
|
109 | 104 | impl Node { |
|
110 | 105 | /// Retrieve the `i`th half-byte of the binary data. |
|
111 | 106 | /// |
|
112 | 107 | /// This is also the `i`th hexadecimal digit in numeric form, |
|
113 | 108 | /// also called a [nybble](https://en.wikipedia.org/wiki/Nibble). |
|
114 | 109 | pub fn get_nybble(&self, i: usize) -> u8 { |
|
115 | 110 | get_nybble(&self.data, i) |
|
116 | 111 | } |
|
117 | 112 | |
|
118 | 113 | /// Length of the data, in nybbles |
|
119 | 114 | pub fn nybbles_len(&self) -> usize { |
|
120 | 115 | // public exposure as an instance method only, so that we can |
|
121 | 116 | // easily support several sizes of hashes if needed in the future. |
|
122 | 117 | NODE_NYBBLES_LENGTH |
|
123 | 118 | } |
|
124 | 119 | |
|
125 | 120 | /// Convert from hexadecimal string representation |
|
126 | 121 | /// |
|
127 | 122 | /// Exact length is required. |
|
128 | 123 | /// |
|
129 | 124 | /// To be used in FFI and I/O only, in order to facilitate future |
|
130 | 125 | /// changes of hash format. |
|
131 |
pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Node, |
|
|
126 | pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Node, FromHexError> { | |
|
132 | 127 | Ok(NodeData::from_hex(hex.as_ref()) |
|
133 |
.map_err(| |
|
|
128 | .map_err(|_| FromHexError)? | |
|
134 | 129 | .into()) |
|
135 | 130 | } |
|
136 | 131 | |
|
137 | 132 | /// Provide access to binary data |
|
138 | 133 | /// |
|
139 | 134 | /// This is needed by FFI layers, for instance to return expected |
|
140 | 135 | /// binary values to Python. |
|
141 | 136 | pub fn as_bytes(&self) -> &[u8] { |
|
142 | 137 | &self.data |
|
143 | 138 | } |
|
144 | 139 | } |
|
145 | 140 | |
|
146 | impl<T: AsRef<[u8]>> From<(FromHexError, T)> for NodeError { | |
|
147 | fn from(err_offender: (FromHexError, T)) -> Self { | |
|
148 | let (err, offender) = err_offender; | |
|
149 | let offender = String::from_utf8_lossy(offender.as_ref()).into_owned(); | |
|
150 | match err { | |
|
151 | FromHexError::InvalidStringLength => { | |
|
152 | NodeError::ExactLengthRequired(NODE_NYBBLES_LENGTH, offender) | |
|
153 | } | |
|
154 | _ => NodeError::HexError(err, offender), | |
|
155 | } | |
|
156 | } | |
|
157 | } | |
|
158 | ||
|
159 | 141 | /// The beginning of a binary revision SHA. |
|
160 | 142 | /// |
|
161 | 143 | /// Since it can potentially come from an hexadecimal representation with |
|
162 | 144 | /// odd length, it needs to carry around whether the last 4 bits are relevant |
|
163 | 145 | /// or not. |
|
164 | 146 | #[derive(Debug, PartialEq)] |
|
165 | 147 | pub struct NodePrefix { |
|
166 | 148 | buf: Vec<u8>, |
|
167 | 149 | is_odd: bool, |
|
168 | 150 | } |
|
169 | 151 | |
|
170 | 152 | impl NodePrefix { |
|
171 | 153 | /// Convert from hexadecimal string representation |
|
172 | 154 | /// |
|
173 | 155 | /// Similarly to `hex::decode`, can be used with Unicode string types |
|
174 | 156 | /// (`String`, `&str`) as well as bytes. |
|
175 | 157 | /// |
|
176 | 158 | /// To be used in FFI and I/O only, in order to facilitate future |
|
177 | 159 | /// changes of hash format. |
|
178 |
pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Self, |
|
|
160 | pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Self, FromHexError> { | |
|
179 | 161 | let hex = hex.as_ref(); |
|
180 | 162 | let len = hex.len(); |
|
181 | 163 | if len > NODE_NYBBLES_LENGTH { |
|
182 |
return Err( |
|
|
183 | String::from_utf8_lossy(hex).to_owned().to_string(), | |
|
184 | )); | |
|
164 | return Err(FromHexError); | |
|
185 | 165 | } |
|
186 | 166 | |
|
187 | 167 | let is_odd = len % 2 == 1; |
|
188 | 168 | let even_part = if is_odd { &hex[..len - 1] } else { hex }; |
|
189 | 169 | let mut buf: Vec<u8> = |
|
190 |
Vec::from_hex(&even_part).map_err(| |
|
|
170 | Vec::from_hex(&even_part).map_err(|_| FromHexError)?; | |
|
191 | 171 | |
|
192 | 172 | if is_odd { |
|
193 | 173 | let latest_char = char::from(hex[len - 1]); |
|
194 |
let latest_nybble = |
|
|
195 | ( | |
|
196 | FromHexError::InvalidHexCharacter { | |
|
197 | c: latest_char, | |
|
198 | index: len - 1, | |
|
199 | }, | |
|
200 | hex, | |
|
201 | ) | |
|
202 | })? as u8; | |
|
174 | let latest_nybble = | |
|
175 | latest_char.to_digit(16).ok_or_else(|| FromHexError)? as u8; | |
|
203 | 176 | buf.push(latest_nybble << 4); |
|
204 | 177 | } |
|
205 | 178 | Ok(NodePrefix { buf, is_odd }) |
|
206 | 179 | } |
|
207 | 180 | |
|
208 | 181 | pub fn borrow(&self) -> NodePrefixRef { |
|
209 | 182 | NodePrefixRef { |
|
210 | 183 | buf: &self.buf, |
|
211 | 184 | is_odd: self.is_odd, |
|
212 | 185 | } |
|
213 | 186 | } |
|
214 | 187 | } |
|
215 | 188 | |
|
216 | 189 | #[derive(Clone, Debug, PartialEq)] |
|
217 | 190 | pub struct NodePrefixRef<'a> { |
|
218 | 191 | buf: &'a [u8], |
|
219 | 192 | is_odd: bool, |
|
220 | 193 | } |
|
221 | 194 | |
|
222 | 195 | impl<'a> NodePrefixRef<'a> { |
|
223 | 196 | pub fn len(&self) -> usize { |
|
224 | 197 | if self.is_odd { |
|
225 | 198 | self.buf.len() * 2 - 1 |
|
226 | 199 | } else { |
|
227 | 200 | self.buf.len() * 2 |
|
228 | 201 | } |
|
229 | 202 | } |
|
230 | 203 | |
|
231 | 204 | pub fn is_empty(&self) -> bool { |
|
232 | 205 | self.len() == 0 |
|
233 | 206 | } |
|
234 | 207 | |
|
235 | 208 | pub fn is_prefix_of(&self, node: &Node) -> bool { |
|
236 | 209 | if self.is_odd { |
|
237 | 210 | let buf = self.buf; |
|
238 | 211 | let last_pos = buf.len() - 1; |
|
239 | 212 | node.data.starts_with(buf.split_at(last_pos).0) |
|
240 | 213 | && node.data[last_pos] >> 4 == buf[last_pos] >> 4 |
|
241 | 214 | } else { |
|
242 | 215 | node.data.starts_with(self.buf) |
|
243 | 216 | } |
|
244 | 217 | } |
|
245 | 218 | |
|
246 | 219 | /// Retrieve the `i`th half-byte from the prefix. |
|
247 | 220 | /// |
|
248 | 221 | /// This is also the `i`th hexadecimal digit in numeric form, |
|
249 | 222 | /// also called a [nybble](https://en.wikipedia.org/wiki/Nibble). |
|
250 | 223 | pub fn get_nybble(&self, i: usize) -> u8 { |
|
251 | 224 | assert!(i < self.len()); |
|
252 | 225 | get_nybble(self.buf, i) |
|
253 | 226 | } |
|
254 | 227 | |
|
255 | 228 | /// Return the index first nybble that's different from `node` |
|
256 | 229 | /// |
|
257 | 230 | /// If the return value is `None` that means that `self` is |
|
258 | 231 | /// a prefix of `node`, but the current method is a bit slower |
|
259 | 232 | /// than `is_prefix_of`. |
|
260 | 233 | /// |
|
261 | 234 | /// Returned index is as in `get_nybble`, i.e., starting at 0. |
|
262 | 235 | pub fn first_different_nybble(&self, node: &Node) -> Option<usize> { |
|
263 | 236 | let buf = self.buf; |
|
264 | 237 | let until = if self.is_odd { |
|
265 | 238 | buf.len() - 1 |
|
266 | 239 | } else { |
|
267 | 240 | buf.len() |
|
268 | 241 | }; |
|
269 | 242 | for (i, item) in buf.iter().enumerate().take(until) { |
|
270 | 243 | if *item != node.data[i] { |
|
271 | 244 | return if *item & 0xf0 == node.data[i] & 0xf0 { |
|
272 | 245 | Some(2 * i + 1) |
|
273 | 246 | } else { |
|
274 | 247 | Some(2 * i) |
|
275 | 248 | }; |
|
276 | 249 | } |
|
277 | 250 | } |
|
278 | 251 | if self.is_odd && buf[until] & 0xf0 != node.data[until] & 0xf0 { |
|
279 | 252 | Some(until * 2) |
|
280 | 253 | } else { |
|
281 | 254 | None |
|
282 | 255 | } |
|
283 | 256 | } |
|
284 | 257 | } |
|
285 | 258 | |
|
286 | 259 | /// A shortcut for full `Node` references |
|
287 | 260 | impl<'a> From<&'a Node> for NodePrefixRef<'a> { |
|
288 | 261 | fn from(node: &'a Node) -> Self { |
|
289 | 262 | NodePrefixRef { |
|
290 | 263 | buf: &node.data, |
|
291 | 264 | is_odd: false, |
|
292 | 265 | } |
|
293 | 266 | } |
|
294 | 267 | } |
|
295 | 268 | |
|
296 | 269 | impl PartialEq<Node> for NodePrefixRef<'_> { |
|
297 | 270 | fn eq(&self, other: &Node) -> bool { |
|
298 | 271 | !self.is_odd && self.buf == other.data |
|
299 | 272 | } |
|
300 | 273 | } |
|
301 | 274 | |
|
302 | 275 | #[cfg(test)] |
|
303 | 276 | mod tests { |
|
304 | 277 | use super::*; |
|
305 | 278 | |
|
306 | 279 | fn sample_node() -> Node { |
|
307 | 280 | let mut data = [0; NODE_BYTES_LENGTH]; |
|
308 | 281 | data.copy_from_slice(&[ |
|
309 | 282 | 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, |
|
310 | 283 | 0x98, 0x76, 0x54, 0x32, 0x10, 0xde, 0xad, 0xbe, 0xef, |
|
311 | 284 | ]); |
|
312 | 285 | data.into() |
|
313 | 286 | } |
|
314 | 287 | |
|
315 | 288 | /// Pad an hexadecimal string to reach `NODE_NYBBLES_LENGTH` |
|
316 | 289 | ///check_hash |
|
317 | 290 | /// The padding is made with zeros |
|
318 | 291 | pub fn hex_pad_right(hex: &str) -> String { |
|
319 | 292 | let mut res = hex.to_string(); |
|
320 | 293 | while res.len() < NODE_NYBBLES_LENGTH { |
|
321 | 294 | res.push('0'); |
|
322 | 295 | } |
|
323 | 296 | res |
|
324 | 297 | } |
|
325 | 298 | |
|
326 | 299 | fn sample_node_hex() -> String { |
|
327 | 300 | hex_pad_right("0123456789abcdeffedcba9876543210deadbeef") |
|
328 | 301 | } |
|
329 | 302 | |
|
330 | 303 | #[test] |
|
331 | 304 | fn test_node_from_hex() { |
|
332 |
assert_eq!(Node::from_hex(&sample_node_hex()), |
|
|
305 | assert_eq!(Node::from_hex(&sample_node_hex()).unwrap(), sample_node()); | |
|
333 | 306 | |
|
334 | 307 | let mut short = hex_pad_right("0123"); |
|
335 | 308 | short.pop(); |
|
336 | 309 | short.pop(); |
|
337 | assert_eq!( | |
|
338 | Node::from_hex(&short), | |
|
339 | Err(NodeError::ExactLengthRequired(NODE_NYBBLES_LENGTH, short)), | |
|
340 | ); | |
|
310 | assert!(Node::from_hex(&short).is_err()); | |
|
341 | 311 | |
|
342 | 312 | let not_hex = hex_pad_right("012... oops"); |
|
343 | assert_eq!( | |
|
344 | Node::from_hex(¬_hex), | |
|
345 | Err(NodeError::HexError( | |
|
346 | FromHexError::InvalidHexCharacter { c: '.', index: 3 }, | |
|
347 | not_hex, | |
|
348 | )), | |
|
349 | ); | |
|
313 | assert!(Node::from_hex(¬_hex).is_err(),); | |
|
350 | 314 | } |
|
351 | 315 | |
|
352 | 316 | #[test] |
|
353 | 317 | fn test_node_encode_hex() { |
|
354 | 318 | assert_eq!(format!("{:x}", sample_node()), sample_node_hex()); |
|
355 | 319 | } |
|
356 | 320 | |
|
357 | 321 | #[test] |
|
358 |
fn test_prefix_from_hex() -> Result<(), |
|
|
322 | fn test_prefix_from_hex() -> Result<(), FromHexError> { | |
|
359 | 323 | assert_eq!( |
|
360 | 324 | NodePrefix::from_hex("0e1")?, |
|
361 | 325 | NodePrefix { |
|
362 | 326 | buf: vec![14, 16], |
|
363 | 327 | is_odd: true |
|
364 | 328 | } |
|
365 | 329 | ); |
|
366 | 330 | assert_eq!( |
|
367 | 331 | NodePrefix::from_hex("0e1a")?, |
|
368 | 332 | NodePrefix { |
|
369 | 333 | buf: vec![14, 26], |
|
370 | 334 | is_odd: false |
|
371 | 335 | } |
|
372 | 336 | ); |
|
373 | 337 | |
|
374 | 338 | // checking limit case |
|
375 | 339 | let node_as_vec = sample_node().data.iter().cloned().collect(); |
|
376 | 340 | assert_eq!( |
|
377 | 341 | NodePrefix::from_hex(sample_node_hex())?, |
|
378 | 342 | NodePrefix { |
|
379 | 343 | buf: node_as_vec, |
|
380 | 344 | is_odd: false |
|
381 | 345 | } |
|
382 | 346 | ); |
|
383 | 347 | |
|
384 | 348 | Ok(()) |
|
385 | 349 | } |
|
386 | 350 | |
|
387 | 351 | #[test] |
|
388 | 352 | fn test_prefix_from_hex_errors() { |
|
389 | assert_eq!( | |
|
390 | NodePrefix::from_hex("testgr"), | |
|
391 | Err(NodeError::HexError( | |
|
392 | FromHexError::InvalidHexCharacter { c: 't', index: 0 }, | |
|
393 | "testgr".to_string() | |
|
394 | )) | |
|
395 | ); | |
|
353 | assert!(NodePrefix::from_hex("testgr").is_err()); | |
|
396 | 354 | let mut long = format!("{:x}", NULL_NODE); |
|
397 | 355 | long.push('c'); |
|
398 |
|
|
|
399 | .expect_err("should be refused as too long") | |
|
400 | { | |
|
401 | NodeError::PrefixTooLong(s) => assert_eq!(s, long), | |
|
402 | err => panic!(format!("Should have been TooLong, got {:?}", err)), | |
|
403 | } | |
|
356 | assert!(NodePrefix::from_hex(&long).is_err()) | |
|
404 | 357 | } |
|
405 | 358 | |
|
406 | 359 | #[test] |
|
407 |
fn test_is_prefix_of() -> Result<(), |
|
|
360 | fn test_is_prefix_of() -> Result<(), FromHexError> { | |
|
408 | 361 | let mut node_data = [0; NODE_BYTES_LENGTH]; |
|
409 | 362 | node_data[0] = 0x12; |
|
410 | 363 | node_data[1] = 0xca; |
|
411 | 364 | let node = Node::from(node_data); |
|
412 | 365 | assert!(NodePrefix::from_hex("12")?.borrow().is_prefix_of(&node)); |
|
413 | 366 | assert!(!NodePrefix::from_hex("1a")?.borrow().is_prefix_of(&node)); |
|
414 | 367 | assert!(NodePrefix::from_hex("12c")?.borrow().is_prefix_of(&node)); |
|
415 | 368 | assert!(!NodePrefix::from_hex("12d")?.borrow().is_prefix_of(&node)); |
|
416 | 369 | Ok(()) |
|
417 | 370 | } |
|
418 | 371 | |
|
419 | 372 | #[test] |
|
420 |
fn test_get_nybble() -> Result<(), |
|
|
373 | fn test_get_nybble() -> Result<(), FromHexError> { | |
|
421 | 374 | let prefix = NodePrefix::from_hex("dead6789cafe")?; |
|
422 | 375 | assert_eq!(prefix.borrow().get_nybble(0), 13); |
|
423 | 376 | assert_eq!(prefix.borrow().get_nybble(7), 9); |
|
424 | 377 | Ok(()) |
|
425 | 378 | } |
|
426 | 379 | |
|
427 | 380 | #[test] |
|
428 | 381 | fn test_first_different_nybble_even_prefix() { |
|
429 | 382 | let prefix = NodePrefix::from_hex("12ca").unwrap(); |
|
430 | 383 | let prefref = prefix.borrow(); |
|
431 | 384 | let mut node = Node::from([0; NODE_BYTES_LENGTH]); |
|
432 | 385 | assert_eq!(prefref.first_different_nybble(&node), Some(0)); |
|
433 | 386 | node.data[0] = 0x13; |
|
434 | 387 | assert_eq!(prefref.first_different_nybble(&node), Some(1)); |
|
435 | 388 | node.data[0] = 0x12; |
|
436 | 389 | assert_eq!(prefref.first_different_nybble(&node), Some(2)); |
|
437 | 390 | node.data[1] = 0xca; |
|
438 | 391 | // now it is a prefix |
|
439 | 392 | assert_eq!(prefref.first_different_nybble(&node), None); |
|
440 | 393 | } |
|
441 | 394 | |
|
442 | 395 | #[test] |
|
443 | 396 | fn test_first_different_nybble_odd_prefix() { |
|
444 | 397 | let prefix = NodePrefix::from_hex("12c").unwrap(); |
|
445 | 398 | let prefref = prefix.borrow(); |
|
446 | 399 | let mut node = Node::from([0; NODE_BYTES_LENGTH]); |
|
447 | 400 | assert_eq!(prefref.first_different_nybble(&node), Some(0)); |
|
448 | 401 | node.data[0] = 0x13; |
|
449 | 402 | assert_eq!(prefref.first_different_nybble(&node), Some(1)); |
|
450 | 403 | node.data[0] = 0x12; |
|
451 | 404 | assert_eq!(prefref.first_different_nybble(&node), Some(2)); |
|
452 | 405 | node.data[1] = 0xca; |
|
453 | 406 | // now it is a prefix |
|
454 | 407 | assert_eq!(prefref.first_different_nybble(&node), None); |
|
455 | 408 | } |
|
456 | 409 | } |
|
457 | 410 | |
|
458 | 411 | #[cfg(test)] |
|
459 | 412 | pub use tests::hex_pad_right; |
@@ -1,1101 +1,1101 b'' | |||
|
1 | 1 | // Copyright 2018-2020 Georges Racinet <georges.racinet@octobus.net> |
|
2 | 2 | // and Mercurial contributors |
|
3 | 3 | // |
|
4 | 4 | // This software may be used and distributed according to the terms of the |
|
5 | 5 | // GNU General Public License version 2 or any later version. |
|
6 | 6 | //! Indexing facilities for fast retrieval of `Revision` from `Node` |
|
7 | 7 | //! |
|
8 | 8 | //! This provides a variation on the 16-ary radix tree that is |
|
9 | 9 | //! provided as "nodetree" in revlog.c, ready for append-only persistence |
|
10 | 10 | //! on disk. |
|
11 | 11 | //! |
|
12 | 12 | //! Following existing implicit conventions, the "nodemap" terminology |
|
13 | 13 | //! is used in a more abstract context. |
|
14 | 14 | |
|
15 | 15 | use super::{ |
|
16 |
node::NULL_NODE, |
|
|
16 | node::NULL_NODE, FromHexError, Node, NodePrefix, NodePrefixRef, Revision, | |
|
17 | 17 | RevlogIndex, NULL_REVISION, |
|
18 | 18 | }; |
|
19 | 19 | |
|
20 | 20 | use bytes_cast::{unaligned, BytesCast}; |
|
21 | 21 | use std::cmp::max; |
|
22 | 22 | use std::fmt; |
|
23 | 23 | use std::mem::{self, align_of, size_of}; |
|
24 | 24 | use std::ops::Deref; |
|
25 | 25 | use std::ops::Index; |
|
26 | 26 | |
|
27 | 27 | #[derive(Debug, PartialEq)] |
|
28 | 28 | pub enum NodeMapError { |
|
29 | 29 | MultipleResults, |
|
30 |
InvalidNodePrefix |
|
|
30 | InvalidNodePrefix, | |
|
31 | 31 | /// A `Revision` stored in the nodemap could not be found in the index |
|
32 | 32 | RevisionNotInIndex(Revision), |
|
33 | 33 | } |
|
34 | 34 | |
|
35 |
impl From< |
|
|
36 |
fn from( |
|
|
37 |
NodeMapError::InvalidNodePrefix |
|
|
35 | impl From<FromHexError> for NodeMapError { | |
|
36 | fn from(_: FromHexError) -> Self { | |
|
37 | NodeMapError::InvalidNodePrefix | |
|
38 | 38 | } |
|
39 | 39 | } |
|
40 | 40 | |
|
41 | 41 | /// Mapping system from Mercurial nodes to revision numbers. |
|
42 | 42 | /// |
|
43 | 43 | /// ## `RevlogIndex` and `NodeMap` |
|
44 | 44 | /// |
|
45 | 45 | /// One way to think about their relationship is that |
|
46 | 46 | /// the `NodeMap` is a prefix-oriented reverse index of the `Node` information |
|
47 | 47 | /// carried by a [`RevlogIndex`]. |
|
48 | 48 | /// |
|
49 | 49 | /// Many of the methods in this trait take a `RevlogIndex` argument |
|
50 | 50 | /// which is used for validation of their results. This index must naturally |
|
51 | 51 | /// be the one the `NodeMap` is about, and it must be consistent. |
|
52 | 52 | /// |
|
53 | 53 | /// Notably, the `NodeMap` must not store |
|
54 | 54 | /// information about more `Revision` values than there are in the index. |
|
55 | 55 | /// In these methods, an encountered `Revision` is not in the index, a |
|
56 | 56 | /// [`RevisionNotInIndex`] error is returned. |
|
57 | 57 | /// |
|
58 | 58 | /// In insert operations, the rule is thus that the `NodeMap` must always |
|
59 | 59 | /// be updated after the `RevlogIndex` |
|
60 | 60 | /// be updated first, and the `NodeMap` second. |
|
61 | 61 | /// |
|
62 | 62 | /// [`RevisionNotInIndex`]: enum.NodeMapError.html#variant.RevisionNotInIndex |
|
63 | 63 | /// [`RevlogIndex`]: ../trait.RevlogIndex.html |
|
64 | 64 | pub trait NodeMap { |
|
65 | 65 | /// Find the unique `Revision` having the given `Node` |
|
66 | 66 | /// |
|
67 | 67 | /// If no Revision matches the given `Node`, `Ok(None)` is returned. |
|
68 | 68 | fn find_node( |
|
69 | 69 | &self, |
|
70 | 70 | index: &impl RevlogIndex, |
|
71 | 71 | node: &Node, |
|
72 | 72 | ) -> Result<Option<Revision>, NodeMapError> { |
|
73 | 73 | self.find_bin(index, node.into()) |
|
74 | 74 | } |
|
75 | 75 | |
|
76 | 76 | /// Find the unique Revision whose `Node` starts with a given binary prefix |
|
77 | 77 | /// |
|
78 | 78 | /// If no Revision matches the given prefix, `Ok(None)` is returned. |
|
79 | 79 | /// |
|
80 | 80 | /// If several Revisions match the given prefix, a [`MultipleResults`] |
|
81 | 81 | /// error is returned. |
|
82 | 82 | fn find_bin<'a>( |
|
83 | 83 | &self, |
|
84 | 84 | idx: &impl RevlogIndex, |
|
85 | 85 | prefix: NodePrefixRef<'a>, |
|
86 | 86 | ) -> Result<Option<Revision>, NodeMapError>; |
|
87 | 87 | |
|
88 | 88 | /// Find the unique Revision whose `Node` hexadecimal string representation |
|
89 | 89 | /// starts with a given prefix |
|
90 | 90 | /// |
|
91 | 91 | /// If no Revision matches the given prefix, `Ok(None)` is returned. |
|
92 | 92 | /// |
|
93 | 93 | /// If several Revisions match the given prefix, a [`MultipleResults`] |
|
94 | 94 | /// error is returned. |
|
95 | 95 | fn find_hex( |
|
96 | 96 | &self, |
|
97 | 97 | idx: &impl RevlogIndex, |
|
98 | 98 | prefix: &str, |
|
99 | 99 | ) -> Result<Option<Revision>, NodeMapError> { |
|
100 | 100 | self.find_bin(idx, NodePrefix::from_hex(prefix)?.borrow()) |
|
101 | 101 | } |
|
102 | 102 | |
|
103 | 103 | /// Give the size of the shortest node prefix that determines |
|
104 | 104 | /// the revision uniquely. |
|
105 | 105 | /// |
|
106 | 106 | /// From a binary node prefix, if it is matched in the node map, this |
|
107 | 107 | /// returns the number of hexadecimal digits that would had sufficed |
|
108 | 108 | /// to find the revision uniquely. |
|
109 | 109 | /// |
|
110 | 110 | /// Returns `None` if no `Revision` could be found for the prefix. |
|
111 | 111 | /// |
|
112 | 112 | /// If several Revisions match the given prefix, a [`MultipleResults`] |
|
113 | 113 | /// error is returned. |
|
114 | 114 | fn unique_prefix_len_bin<'a>( |
|
115 | 115 | &self, |
|
116 | 116 | idx: &impl RevlogIndex, |
|
117 | 117 | node_prefix: NodePrefixRef<'a>, |
|
118 | 118 | ) -> Result<Option<usize>, NodeMapError>; |
|
119 | 119 | |
|
120 | 120 | /// Same as `unique_prefix_len_bin`, with the hexadecimal representation |
|
121 | 121 | /// of the prefix as input. |
|
122 | 122 | fn unique_prefix_len_hex( |
|
123 | 123 | &self, |
|
124 | 124 | idx: &impl RevlogIndex, |
|
125 | 125 | prefix: &str, |
|
126 | 126 | ) -> Result<Option<usize>, NodeMapError> { |
|
127 | 127 | self.unique_prefix_len_bin(idx, NodePrefix::from_hex(prefix)?.borrow()) |
|
128 | 128 | } |
|
129 | 129 | |
|
130 | 130 | /// Same as `unique_prefix_len_bin`, with a full `Node` as input |
|
131 | 131 | fn unique_prefix_len_node( |
|
132 | 132 | &self, |
|
133 | 133 | idx: &impl RevlogIndex, |
|
134 | 134 | node: &Node, |
|
135 | 135 | ) -> Result<Option<usize>, NodeMapError> { |
|
136 | 136 | self.unique_prefix_len_bin(idx, node.into()) |
|
137 | 137 | } |
|
138 | 138 | } |
|
139 | 139 | |
|
140 | 140 | pub trait MutableNodeMap: NodeMap { |
|
141 | 141 | fn insert<I: RevlogIndex>( |
|
142 | 142 | &mut self, |
|
143 | 143 | index: &I, |
|
144 | 144 | node: &Node, |
|
145 | 145 | rev: Revision, |
|
146 | 146 | ) -> Result<(), NodeMapError>; |
|
147 | 147 | } |
|
148 | 148 | |
|
149 | 149 | /// Low level NodeTree [`Blocks`] elements |
|
150 | 150 | /// |
|
151 | 151 | /// These are exactly as for instance on persistent storage. |
|
152 | 152 | type RawElement = unaligned::I32Be; |
|
153 | 153 | |
|
154 | 154 | /// High level representation of values in NodeTree |
|
155 | 155 | /// [`Blocks`](struct.Block.html) |
|
156 | 156 | /// |
|
157 | 157 | /// This is the high level representation that most algorithms should |
|
158 | 158 | /// use. |
|
159 | 159 | #[derive(Clone, Debug, Eq, PartialEq)] |
|
160 | 160 | enum Element { |
|
161 | 161 | Rev(Revision), |
|
162 | 162 | Block(usize), |
|
163 | 163 | None, |
|
164 | 164 | } |
|
165 | 165 | |
|
166 | 166 | impl From<RawElement> for Element { |
|
167 | 167 | /// Conversion from low level representation, after endianness conversion. |
|
168 | 168 | /// |
|
169 | 169 | /// See [`Block`](struct.Block.html) for explanation about the encoding. |
|
170 | 170 | fn from(raw: RawElement) -> Element { |
|
171 | 171 | let int = raw.get(); |
|
172 | 172 | if int >= 0 { |
|
173 | 173 | Element::Block(int as usize) |
|
174 | 174 | } else if int == -1 { |
|
175 | 175 | Element::None |
|
176 | 176 | } else { |
|
177 | 177 | Element::Rev(-int - 2) |
|
178 | 178 | } |
|
179 | 179 | } |
|
180 | 180 | } |
|
181 | 181 | |
|
182 | 182 | impl From<Element> for RawElement { |
|
183 | 183 | fn from(element: Element) -> RawElement { |
|
184 | 184 | RawElement::from(match element { |
|
185 | 185 | Element::None => 0, |
|
186 | 186 | Element::Block(i) => i as i32, |
|
187 | 187 | Element::Rev(rev) => -rev - 2, |
|
188 | 188 | }) |
|
189 | 189 | } |
|
190 | 190 | } |
|
191 | 191 | |
|
192 | 192 | /// A logical block of the `NodeTree`, packed with a fixed size. |
|
193 | 193 | /// |
|
194 | 194 | /// These are always used in container types implementing `Index<Block>`, |
|
195 | 195 | /// such as `&Block` |
|
196 | 196 | /// |
|
197 | 197 | /// As an array of integers, its ith element encodes that the |
|
198 | 198 | /// ith potential edge from the block, representing the ith hexadecimal digit |
|
199 | 199 | /// (nybble) `i` is either: |
|
200 | 200 | /// |
|
201 | 201 | /// - absent (value -1) |
|
202 | 202 | /// - another `Block` in the same indexable container (value ≥ 0) |
|
203 | 203 | /// - a `Revision` leaf (value ≤ -2) |
|
204 | 204 | /// |
|
205 | 205 | /// Endianness has to be fixed for consistency on shared storage across |
|
206 | 206 | /// different architectures. |
|
207 | 207 | /// |
|
208 | 208 | /// A key difference with the C `nodetree` is that we need to be |
|
209 | 209 | /// able to represent the [`Block`] at index 0, hence -1 is the empty marker |
|
210 | 210 | /// rather than 0 and the `Revision` range upper limit of -2 instead of -1. |
|
211 | 211 | /// |
|
212 | 212 | /// Another related difference is that `NULL_REVISION` (-1) is not |
|
213 | 213 | /// represented at all, because we want an immutable empty nodetree |
|
214 | 214 | /// to be valid. |
|
215 | 215 | |
|
216 | 216 | const ELEMENTS_PER_BLOCK: usize = 16; // number of different values in a nybble |
|
217 | 217 | |
|
218 | 218 | #[derive(Copy, Clone, BytesCast, PartialEq)] |
|
219 | 219 | #[repr(transparent)] |
|
220 | 220 | pub struct Block([RawElement; ELEMENTS_PER_BLOCK]); |
|
221 | 221 | |
|
222 | 222 | impl Block { |
|
223 | 223 | fn new() -> Self { |
|
224 | 224 | let absent_node = RawElement::from(-1); |
|
225 | 225 | Block([absent_node; ELEMENTS_PER_BLOCK]) |
|
226 | 226 | } |
|
227 | 227 | |
|
228 | 228 | fn get(&self, nybble: u8) -> Element { |
|
229 | 229 | self.0[nybble as usize].into() |
|
230 | 230 | } |
|
231 | 231 | |
|
232 | 232 | fn set(&mut self, nybble: u8, element: Element) { |
|
233 | 233 | self.0[nybble as usize] = element.into() |
|
234 | 234 | } |
|
235 | 235 | } |
|
236 | 236 | |
|
237 | 237 | impl fmt::Debug for Block { |
|
238 | 238 | /// sparse representation for testing and debugging purposes |
|
239 | 239 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
|
240 | 240 | f.debug_map() |
|
241 | 241 | .entries((0..16).filter_map(|i| match self.get(i) { |
|
242 | 242 | Element::None => None, |
|
243 | 243 | element => Some((i, element)), |
|
244 | 244 | })) |
|
245 | 245 | .finish() |
|
246 | 246 | } |
|
247 | 247 | } |
|
248 | 248 | |
|
249 | 249 | /// A mutable 16-radix tree with the root block logically at the end |
|
250 | 250 | /// |
|
251 | 251 | /// Because of the append only nature of our node trees, we need to |
|
252 | 252 | /// keep the original untouched and store new blocks separately. |
|
253 | 253 | /// |
|
254 | 254 | /// The mutable root `Block` is kept apart so that we don't have to rebump |
|
255 | 255 | /// it on each insertion. |
|
256 | 256 | pub struct NodeTree { |
|
257 | 257 | readonly: Box<dyn Deref<Target = [Block]> + Send>, |
|
258 | 258 | growable: Vec<Block>, |
|
259 | 259 | root: Block, |
|
260 | 260 | masked_inner_blocks: usize, |
|
261 | 261 | } |
|
262 | 262 | |
|
263 | 263 | impl Index<usize> for NodeTree { |
|
264 | 264 | type Output = Block; |
|
265 | 265 | |
|
266 | 266 | fn index(&self, i: usize) -> &Block { |
|
267 | 267 | let ro_len = self.readonly.len(); |
|
268 | 268 | if i < ro_len { |
|
269 | 269 | &self.readonly[i] |
|
270 | 270 | } else if i == ro_len + self.growable.len() { |
|
271 | 271 | &self.root |
|
272 | 272 | } else { |
|
273 | 273 | &self.growable[i - ro_len] |
|
274 | 274 | } |
|
275 | 275 | } |
|
276 | 276 | } |
|
277 | 277 | |
|
278 | 278 | /// Return `None` unless the `Node` for `rev` has given prefix in `index`. |
|
279 | 279 | fn has_prefix_or_none( |
|
280 | 280 | idx: &impl RevlogIndex, |
|
281 | 281 | prefix: NodePrefixRef, |
|
282 | 282 | rev: Revision, |
|
283 | 283 | ) -> Result<Option<Revision>, NodeMapError> { |
|
284 | 284 | idx.node(rev) |
|
285 | 285 | .ok_or_else(|| NodeMapError::RevisionNotInIndex(rev)) |
|
286 | 286 | .map(|node| { |
|
287 | 287 | if prefix.is_prefix_of(node) { |
|
288 | 288 | Some(rev) |
|
289 | 289 | } else { |
|
290 | 290 | None |
|
291 | 291 | } |
|
292 | 292 | }) |
|
293 | 293 | } |
|
294 | 294 | |
|
295 | 295 | /// validate that the candidate's node starts indeed with given prefix, |
|
296 | 296 | /// and treat ambiguities related to `NULL_REVISION`. |
|
297 | 297 | /// |
|
298 | 298 | /// From the data in the NodeTree, one can only conclude that some |
|
299 | 299 | /// revision is the only one for a *subprefix* of the one being looked up. |
|
300 | 300 | fn validate_candidate( |
|
301 | 301 | idx: &impl RevlogIndex, |
|
302 | 302 | prefix: NodePrefixRef, |
|
303 | 303 | candidate: (Option<Revision>, usize), |
|
304 | 304 | ) -> Result<(Option<Revision>, usize), NodeMapError> { |
|
305 | 305 | let (rev, steps) = candidate; |
|
306 | 306 | if let Some(nz_nybble) = prefix.first_different_nybble(&NULL_NODE) { |
|
307 | 307 | rev.map_or(Ok((None, steps)), |r| { |
|
308 | 308 | has_prefix_or_none(idx, prefix, r) |
|
309 | 309 | .map(|opt| (opt, max(steps, nz_nybble + 1))) |
|
310 | 310 | }) |
|
311 | 311 | } else { |
|
312 | 312 | // the prefix is only made of zeros; NULL_REVISION always matches it |
|
313 | 313 | // and any other *valid* result is an ambiguity |
|
314 | 314 | match rev { |
|
315 | 315 | None => Ok((Some(NULL_REVISION), steps + 1)), |
|
316 | 316 | Some(r) => match has_prefix_or_none(idx, prefix, r)? { |
|
317 | 317 | None => Ok((Some(NULL_REVISION), steps + 1)), |
|
318 | 318 | _ => Err(NodeMapError::MultipleResults), |
|
319 | 319 | }, |
|
320 | 320 | } |
|
321 | 321 | } |
|
322 | 322 | } |
|
323 | 323 | |
|
324 | 324 | impl NodeTree { |
|
325 | 325 | /// Initiate a NodeTree from an immutable slice-like of `Block` |
|
326 | 326 | /// |
|
327 | 327 | /// We keep `readonly` and clone its root block if it isn't empty. |
|
328 | 328 | fn new(readonly: Box<dyn Deref<Target = [Block]> + Send>) -> Self { |
|
329 | 329 | let root = readonly.last().cloned().unwrap_or_else(Block::new); |
|
330 | 330 | NodeTree { |
|
331 | 331 | readonly, |
|
332 | 332 | growable: Vec::new(), |
|
333 | 333 | root, |
|
334 | 334 | masked_inner_blocks: 0, |
|
335 | 335 | } |
|
336 | 336 | } |
|
337 | 337 | |
|
338 | 338 | /// Create from an opaque bunch of bytes |
|
339 | 339 | /// |
|
340 | 340 | /// The created `NodeTreeBytes` from `buffer`, |
|
341 | 341 | /// of which exactly `amount` bytes are used. |
|
342 | 342 | /// |
|
343 | 343 | /// - `buffer` could be derived from `PyBuffer` and `Mmap` objects. |
|
344 | 344 | /// - `offset` allows for the final file format to include fixed data |
|
345 | 345 | /// (generation number, behavioural flags) |
|
346 | 346 | /// - `amount` is expressed in bytes, and is not automatically derived from |
|
347 | 347 | /// `bytes`, so that a caller that manages them atomically can perform |
|
348 | 348 | /// temporary disk serializations and still rollback easily if needed. |
|
349 | 349 | /// First use-case for this would be to support Mercurial shell hooks. |
|
350 | 350 | /// |
|
351 | 351 | /// panics if `buffer` is smaller than `amount` |
|
352 | 352 | pub fn load_bytes( |
|
353 | 353 | bytes: Box<dyn Deref<Target = [u8]> + Send>, |
|
354 | 354 | amount: usize, |
|
355 | 355 | ) -> Self { |
|
356 | 356 | NodeTree::new(Box::new(NodeTreeBytes::new(bytes, amount))) |
|
357 | 357 | } |
|
358 | 358 | |
|
359 | 359 | /// Retrieve added `Block` and the original immutable data |
|
360 | 360 | pub fn into_readonly_and_added( |
|
361 | 361 | self, |
|
362 | 362 | ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<Block>) { |
|
363 | 363 | let mut vec = self.growable; |
|
364 | 364 | let readonly = self.readonly; |
|
365 | 365 | if readonly.last() != Some(&self.root) { |
|
366 | 366 | vec.push(self.root); |
|
367 | 367 | } |
|
368 | 368 | (readonly, vec) |
|
369 | 369 | } |
|
370 | 370 | |
|
371 | 371 | /// Retrieve added `Blocks` as bytes, ready to be written to persistent |
|
372 | 372 | /// storage |
|
373 | 373 | pub fn into_readonly_and_added_bytes( |
|
374 | 374 | self, |
|
375 | 375 | ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<u8>) { |
|
376 | 376 | let (readonly, vec) = self.into_readonly_and_added(); |
|
377 | 377 | // Prevent running `v`'s destructor so we are in complete control |
|
378 | 378 | // of the allocation. |
|
379 | 379 | let vec = mem::ManuallyDrop::new(vec); |
|
380 | 380 | |
|
381 | 381 | // Transmute the `Vec<Block>` to a `Vec<u8>`. Blocks are contiguous |
|
382 | 382 | // bytes, so this is perfectly safe. |
|
383 | 383 | let bytes = unsafe { |
|
384 | 384 | // Check for compatible allocation layout. |
|
385 | 385 | // (Optimized away by constant-folding + dead code elimination.) |
|
386 | 386 | assert_eq!(size_of::<Block>(), 64); |
|
387 | 387 | assert_eq!(align_of::<Block>(), 1); |
|
388 | 388 | |
|
389 | 389 | // /!\ Any use of `vec` after this is use-after-free. |
|
390 | 390 | // TODO: use `into_raw_parts` once stabilized |
|
391 | 391 | Vec::from_raw_parts( |
|
392 | 392 | vec.as_ptr() as *mut u8, |
|
393 | 393 | vec.len() * size_of::<Block>(), |
|
394 | 394 | vec.capacity() * size_of::<Block>(), |
|
395 | 395 | ) |
|
396 | 396 | }; |
|
397 | 397 | (readonly, bytes) |
|
398 | 398 | } |
|
399 | 399 | |
|
400 | 400 | /// Total number of blocks |
|
401 | 401 | fn len(&self) -> usize { |
|
402 | 402 | self.readonly.len() + self.growable.len() + 1 |
|
403 | 403 | } |
|
404 | 404 | |
|
405 | 405 | /// Implemented for completeness |
|
406 | 406 | /// |
|
407 | 407 | /// A `NodeTree` always has at least the mutable root block. |
|
408 | 408 | #[allow(dead_code)] |
|
409 | 409 | fn is_empty(&self) -> bool { |
|
410 | 410 | false |
|
411 | 411 | } |
|
412 | 412 | |
|
413 | 413 | /// Main working method for `NodeTree` searches |
|
414 | 414 | /// |
|
415 | 415 | /// The first returned value is the result of analysing `NodeTree` data |
|
416 | 416 | /// *alone*: whereas `None` guarantees that the given prefix is absent |
|
417 | 417 | /// from the `NodeTree` data (but still could match `NULL_NODE`), with |
|
418 | 418 | /// `Some(rev)`, it is to be understood that `rev` is the unique `Revision` |
|
419 | 419 | /// that could match the prefix. Actually, all that can be inferred from |
|
420 | 420 | /// the `NodeTree` data is that `rev` is the revision with the longest |
|
421 | 421 | /// common node prefix with the given prefix. |
|
422 | 422 | /// |
|
423 | 423 | /// The second returned value is the size of the smallest subprefix |
|
424 | 424 | /// of `prefix` that would give the same result, i.e. not the |
|
425 | 425 | /// `MultipleResults` error variant (again, using only the data of the |
|
426 | 426 | /// `NodeTree`). |
|
427 | 427 | fn lookup( |
|
428 | 428 | &self, |
|
429 | 429 | prefix: NodePrefixRef, |
|
430 | 430 | ) -> Result<(Option<Revision>, usize), NodeMapError> { |
|
431 | 431 | for (i, visit_item) in self.visit(prefix).enumerate() { |
|
432 | 432 | if let Some(opt) = visit_item.final_revision() { |
|
433 | 433 | return Ok((opt, i + 1)); |
|
434 | 434 | } |
|
435 | 435 | } |
|
436 | 436 | Err(NodeMapError::MultipleResults) |
|
437 | 437 | } |
|
438 | 438 | |
|
439 | 439 | fn visit<'n, 'p>( |
|
440 | 440 | &'n self, |
|
441 | 441 | prefix: NodePrefixRef<'p>, |
|
442 | 442 | ) -> NodeTreeVisitor<'n, 'p> { |
|
443 | 443 | NodeTreeVisitor { |
|
444 | 444 | nt: self, |
|
445 | 445 | prefix, |
|
446 | 446 | visit: self.len() - 1, |
|
447 | 447 | nybble_idx: 0, |
|
448 | 448 | done: false, |
|
449 | 449 | } |
|
450 | 450 | } |
|
451 | 451 | /// Return a mutable reference for `Block` at index `idx`. |
|
452 | 452 | /// |
|
453 | 453 | /// If `idx` lies in the immutable area, then the reference is to |
|
454 | 454 | /// a newly appended copy. |
|
455 | 455 | /// |
|
456 | 456 | /// Returns (new_idx, glen, mut_ref) where |
|
457 | 457 | /// |
|
458 | 458 | /// - `new_idx` is the index of the mutable `Block` |
|
459 | 459 | /// - `mut_ref` is a mutable reference to the mutable Block. |
|
460 | 460 | /// - `glen` is the new length of `self.growable` |
|
461 | 461 | /// |
|
462 | 462 | /// Note: the caller wouldn't be allowed to query `self.growable.len()` |
|
463 | 463 | /// itself because of the mutable borrow taken with the returned `Block` |
|
464 | 464 | fn mutable_block(&mut self, idx: usize) -> (usize, &mut Block, usize) { |
|
465 | 465 | let ro_blocks = &self.readonly; |
|
466 | 466 | let ro_len = ro_blocks.len(); |
|
467 | 467 | let glen = self.growable.len(); |
|
468 | 468 | if idx < ro_len { |
|
469 | 469 | self.masked_inner_blocks += 1; |
|
470 | 470 | self.growable.push(ro_blocks[idx]); |
|
471 | 471 | (glen + ro_len, &mut self.growable[glen], glen + 1) |
|
472 | 472 | } else if glen + ro_len == idx { |
|
473 | 473 | (idx, &mut self.root, glen) |
|
474 | 474 | } else { |
|
475 | 475 | (idx, &mut self.growable[idx - ro_len], glen) |
|
476 | 476 | } |
|
477 | 477 | } |
|
478 | 478 | |
|
479 | 479 | /// Main insertion method |
|
480 | 480 | /// |
|
481 | 481 | /// This will dive in the node tree to find the deepest `Block` for |
|
482 | 482 | /// `node`, split it as much as needed and record `node` in there. |
|
483 | 483 | /// The method then backtracks, updating references in all the visited |
|
484 | 484 | /// blocks from the root. |
|
485 | 485 | /// |
|
486 | 486 | /// All the mutated `Block` are copied first to the growable part if |
|
487 | 487 | /// needed. That happens for those in the immutable part except the root. |
|
488 | 488 | pub fn insert<I: RevlogIndex>( |
|
489 | 489 | &mut self, |
|
490 | 490 | index: &I, |
|
491 | 491 | node: &Node, |
|
492 | 492 | rev: Revision, |
|
493 | 493 | ) -> Result<(), NodeMapError> { |
|
494 | 494 | let ro_len = &self.readonly.len(); |
|
495 | 495 | |
|
496 | 496 | let mut visit_steps: Vec<_> = self.visit(node.into()).collect(); |
|
497 | 497 | let read_nybbles = visit_steps.len(); |
|
498 | 498 | // visit_steps cannot be empty, since we always visit the root block |
|
499 | 499 | let deepest = visit_steps.pop().unwrap(); |
|
500 | 500 | |
|
501 | 501 | let (mut block_idx, mut block, mut glen) = |
|
502 | 502 | self.mutable_block(deepest.block_idx); |
|
503 | 503 | |
|
504 | 504 | if let Element::Rev(old_rev) = deepest.element { |
|
505 | 505 | let old_node = index |
|
506 | 506 | .node(old_rev) |
|
507 | 507 | .ok_or_else(|| NodeMapError::RevisionNotInIndex(old_rev))?; |
|
508 | 508 | if old_node == node { |
|
509 | 509 | return Ok(()); // avoid creating lots of useless blocks |
|
510 | 510 | } |
|
511 | 511 | |
|
512 | 512 | // Looping over the tail of nybbles in both nodes, creating |
|
513 | 513 | // new blocks until we find the difference |
|
514 | 514 | let mut new_block_idx = ro_len + glen; |
|
515 | 515 | let mut nybble = deepest.nybble; |
|
516 | 516 | for nybble_pos in read_nybbles..node.nybbles_len() { |
|
517 | 517 | block.set(nybble, Element::Block(new_block_idx)); |
|
518 | 518 | |
|
519 | 519 | let new_nybble = node.get_nybble(nybble_pos); |
|
520 | 520 | let old_nybble = old_node.get_nybble(nybble_pos); |
|
521 | 521 | |
|
522 | 522 | if old_nybble == new_nybble { |
|
523 | 523 | self.growable.push(Block::new()); |
|
524 | 524 | block = &mut self.growable[glen]; |
|
525 | 525 | glen += 1; |
|
526 | 526 | new_block_idx += 1; |
|
527 | 527 | nybble = new_nybble; |
|
528 | 528 | } else { |
|
529 | 529 | let mut new_block = Block::new(); |
|
530 | 530 | new_block.set(old_nybble, Element::Rev(old_rev)); |
|
531 | 531 | new_block.set(new_nybble, Element::Rev(rev)); |
|
532 | 532 | self.growable.push(new_block); |
|
533 | 533 | break; |
|
534 | 534 | } |
|
535 | 535 | } |
|
536 | 536 | } else { |
|
537 | 537 | // Free slot in the deepest block: no splitting has to be done |
|
538 | 538 | block.set(deepest.nybble, Element::Rev(rev)); |
|
539 | 539 | } |
|
540 | 540 | |
|
541 | 541 | // Backtrack over visit steps to update references |
|
542 | 542 | while let Some(visited) = visit_steps.pop() { |
|
543 | 543 | let to_write = Element::Block(block_idx); |
|
544 | 544 | if visit_steps.is_empty() { |
|
545 | 545 | self.root.set(visited.nybble, to_write); |
|
546 | 546 | break; |
|
547 | 547 | } |
|
548 | 548 | let (new_idx, block, _) = self.mutable_block(visited.block_idx); |
|
549 | 549 | if block.get(visited.nybble) == to_write { |
|
550 | 550 | break; |
|
551 | 551 | } |
|
552 | 552 | block.set(visited.nybble, to_write); |
|
553 | 553 | block_idx = new_idx; |
|
554 | 554 | } |
|
555 | 555 | Ok(()) |
|
556 | 556 | } |
|
557 | 557 | |
|
558 | 558 | /// Make the whole `NodeTree` logically empty, without touching the |
|
559 | 559 | /// immutable part. |
|
560 | 560 | pub fn invalidate_all(&mut self) { |
|
561 | 561 | self.root = Block::new(); |
|
562 | 562 | self.growable = Vec::new(); |
|
563 | 563 | self.masked_inner_blocks = self.readonly.len(); |
|
564 | 564 | } |
|
565 | 565 | |
|
566 | 566 | /// Return the number of blocks in the readonly part that are currently |
|
567 | 567 | /// masked in the mutable part. |
|
568 | 568 | /// |
|
569 | 569 | /// The `NodeTree` structure has no efficient way to know how many blocks |
|
570 | 570 | /// are already unreachable in the readonly part. |
|
571 | 571 | /// |
|
572 | 572 | /// After a call to `invalidate_all()`, the returned number can be actually |
|
573 | 573 | /// bigger than the whole readonly part, a conventional way to mean that |
|
574 | 574 | /// all the readonly blocks have been masked. This is what is really |
|
575 | 575 | /// useful to the caller and does not require to know how many were |
|
576 | 576 | /// actually unreachable to begin with. |
|
577 | 577 | pub fn masked_readonly_blocks(&self) -> usize { |
|
578 | 578 | if let Some(readonly_root) = self.readonly.last() { |
|
579 | 579 | if readonly_root == &self.root { |
|
580 | 580 | return 0; |
|
581 | 581 | } |
|
582 | 582 | } else { |
|
583 | 583 | return 0; |
|
584 | 584 | } |
|
585 | 585 | self.masked_inner_blocks + 1 |
|
586 | 586 | } |
|
587 | 587 | } |
|
588 | 588 | |
|
589 | 589 | pub struct NodeTreeBytes { |
|
590 | 590 | buffer: Box<dyn Deref<Target = [u8]> + Send>, |
|
591 | 591 | len_in_blocks: usize, |
|
592 | 592 | } |
|
593 | 593 | |
|
594 | 594 | impl NodeTreeBytes { |
|
595 | 595 | fn new( |
|
596 | 596 | buffer: Box<dyn Deref<Target = [u8]> + Send>, |
|
597 | 597 | amount: usize, |
|
598 | 598 | ) -> Self { |
|
599 | 599 | assert!(buffer.len() >= amount); |
|
600 | 600 | let len_in_blocks = amount / size_of::<Block>(); |
|
601 | 601 | NodeTreeBytes { |
|
602 | 602 | buffer, |
|
603 | 603 | len_in_blocks, |
|
604 | 604 | } |
|
605 | 605 | } |
|
606 | 606 | } |
|
607 | 607 | |
|
608 | 608 | impl Deref for NodeTreeBytes { |
|
609 | 609 | type Target = [Block]; |
|
610 | 610 | |
|
611 | 611 | fn deref(&self) -> &[Block] { |
|
612 | 612 | Block::slice_from_bytes(&self.buffer, self.len_in_blocks) |
|
613 | 613 | // `NodeTreeBytes::new` already asserted that `self.buffer` is |
|
614 | 614 | // large enough. |
|
615 | 615 | .unwrap() |
|
616 | 616 | .0 |
|
617 | 617 | } |
|
618 | 618 | } |
|
619 | 619 | |
|
620 | 620 | struct NodeTreeVisitor<'n, 'p> { |
|
621 | 621 | nt: &'n NodeTree, |
|
622 | 622 | prefix: NodePrefixRef<'p>, |
|
623 | 623 | visit: usize, |
|
624 | 624 | nybble_idx: usize, |
|
625 | 625 | done: bool, |
|
626 | 626 | } |
|
627 | 627 | |
|
628 | 628 | #[derive(Debug, PartialEq, Clone)] |
|
629 | 629 | struct NodeTreeVisitItem { |
|
630 | 630 | block_idx: usize, |
|
631 | 631 | nybble: u8, |
|
632 | 632 | element: Element, |
|
633 | 633 | } |
|
634 | 634 | |
|
635 | 635 | impl<'n, 'p> Iterator for NodeTreeVisitor<'n, 'p> { |
|
636 | 636 | type Item = NodeTreeVisitItem; |
|
637 | 637 | |
|
638 | 638 | fn next(&mut self) -> Option<Self::Item> { |
|
639 | 639 | if self.done || self.nybble_idx >= self.prefix.len() { |
|
640 | 640 | return None; |
|
641 | 641 | } |
|
642 | 642 | |
|
643 | 643 | let nybble = self.prefix.get_nybble(self.nybble_idx); |
|
644 | 644 | self.nybble_idx += 1; |
|
645 | 645 | |
|
646 | 646 | let visit = self.visit; |
|
647 | 647 | let element = self.nt[visit].get(nybble); |
|
648 | 648 | if let Element::Block(idx) = element { |
|
649 | 649 | self.visit = idx; |
|
650 | 650 | } else { |
|
651 | 651 | self.done = true; |
|
652 | 652 | } |
|
653 | 653 | |
|
654 | 654 | Some(NodeTreeVisitItem { |
|
655 | 655 | block_idx: visit, |
|
656 | 656 | nybble, |
|
657 | 657 | element, |
|
658 | 658 | }) |
|
659 | 659 | } |
|
660 | 660 | } |
|
661 | 661 | |
|
662 | 662 | impl NodeTreeVisitItem { |
|
663 | 663 | // Return `Some(opt)` if this item is final, with `opt` being the |
|
664 | 664 | // `Revision` that it may represent. |
|
665 | 665 | // |
|
666 | 666 | // If the item is not terminal, return `None` |
|
667 | 667 | fn final_revision(&self) -> Option<Option<Revision>> { |
|
668 | 668 | match self.element { |
|
669 | 669 | Element::Block(_) => None, |
|
670 | 670 | Element::Rev(r) => Some(Some(r)), |
|
671 | 671 | Element::None => Some(None), |
|
672 | 672 | } |
|
673 | 673 | } |
|
674 | 674 | } |
|
675 | 675 | |
|
676 | 676 | impl From<Vec<Block>> for NodeTree { |
|
677 | 677 | fn from(vec: Vec<Block>) -> Self { |
|
678 | 678 | Self::new(Box::new(vec)) |
|
679 | 679 | } |
|
680 | 680 | } |
|
681 | 681 | |
|
682 | 682 | impl fmt::Debug for NodeTree { |
|
683 | 683 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
|
684 | 684 | let readonly: &[Block] = &*self.readonly; |
|
685 | 685 | write!( |
|
686 | 686 | f, |
|
687 | 687 | "readonly: {:?}, growable: {:?}, root: {:?}", |
|
688 | 688 | readonly, self.growable, self.root |
|
689 | 689 | ) |
|
690 | 690 | } |
|
691 | 691 | } |
|
692 | 692 | |
|
693 | 693 | impl Default for NodeTree { |
|
694 | 694 | /// Create a fully mutable empty NodeTree |
|
695 | 695 | fn default() -> Self { |
|
696 | 696 | NodeTree::new(Box::new(Vec::new())) |
|
697 | 697 | } |
|
698 | 698 | } |
|
699 | 699 | |
|
700 | 700 | impl NodeMap for NodeTree { |
|
701 | 701 | fn find_bin<'a>( |
|
702 | 702 | &self, |
|
703 | 703 | idx: &impl RevlogIndex, |
|
704 | 704 | prefix: NodePrefixRef<'a>, |
|
705 | 705 | ) -> Result<Option<Revision>, NodeMapError> { |
|
706 | 706 | validate_candidate(idx, prefix.clone(), self.lookup(prefix)?) |
|
707 | 707 | .map(|(opt, _shortest)| opt) |
|
708 | 708 | } |
|
709 | 709 | |
|
710 | 710 | fn unique_prefix_len_bin<'a>( |
|
711 | 711 | &self, |
|
712 | 712 | idx: &impl RevlogIndex, |
|
713 | 713 | prefix: NodePrefixRef<'a>, |
|
714 | 714 | ) -> Result<Option<usize>, NodeMapError> { |
|
715 | 715 | validate_candidate(idx, prefix.clone(), self.lookup(prefix)?) |
|
716 | 716 | .map(|(opt, shortest)| opt.map(|_rev| shortest)) |
|
717 | 717 | } |
|
718 | 718 | } |
|
719 | 719 | |
|
720 | 720 | #[cfg(test)] |
|
721 | 721 | mod tests { |
|
722 | 722 | use super::NodeMapError::*; |
|
723 | 723 | use super::*; |
|
724 | 724 | use crate::revlog::node::{hex_pad_right, Node}; |
|
725 | 725 | use std::collections::HashMap; |
|
726 | 726 | |
|
727 | 727 | /// Creates a `Block` using a syntax close to the `Debug` output |
|
728 | 728 | macro_rules! block { |
|
729 | 729 | {$($nybble:tt : $variant:ident($val:tt)),*} => ( |
|
730 | 730 | { |
|
731 | 731 | let mut block = Block::new(); |
|
732 | 732 | $(block.set($nybble, Element::$variant($val)));*; |
|
733 | 733 | block |
|
734 | 734 | } |
|
735 | 735 | ) |
|
736 | 736 | } |
|
737 | 737 | |
|
738 | 738 | #[test] |
|
739 | 739 | fn test_block_debug() { |
|
740 | 740 | let mut block = Block::new(); |
|
741 | 741 | block.set(1, Element::Rev(3)); |
|
742 | 742 | block.set(10, Element::Block(0)); |
|
743 | 743 | assert_eq!(format!("{:?}", block), "{1: Rev(3), 10: Block(0)}"); |
|
744 | 744 | } |
|
745 | 745 | |
|
746 | 746 | #[test] |
|
747 | 747 | fn test_block_macro() { |
|
748 | 748 | let block = block! {5: Block(2)}; |
|
749 | 749 | assert_eq!(format!("{:?}", block), "{5: Block(2)}"); |
|
750 | 750 | |
|
751 | 751 | let block = block! {13: Rev(15), 5: Block(2)}; |
|
752 | 752 | assert_eq!(format!("{:?}", block), "{5: Block(2), 13: Rev(15)}"); |
|
753 | 753 | } |
|
754 | 754 | |
|
755 | 755 | #[test] |
|
756 | 756 | fn test_raw_block() { |
|
757 | 757 | let mut raw = [255u8; 64]; |
|
758 | 758 | |
|
759 | 759 | let mut counter = 0; |
|
760 | 760 | for val in [0_i32, 15, -2, -1, -3].iter() { |
|
761 | 761 | for byte in val.to_be_bytes().iter() { |
|
762 | 762 | raw[counter] = *byte; |
|
763 | 763 | counter += 1; |
|
764 | 764 | } |
|
765 | 765 | } |
|
766 | 766 | let (block, _) = Block::from_bytes(&raw).unwrap(); |
|
767 | 767 | assert_eq!(block.get(0), Element::Block(0)); |
|
768 | 768 | assert_eq!(block.get(1), Element::Block(15)); |
|
769 | 769 | assert_eq!(block.get(3), Element::None); |
|
770 | 770 | assert_eq!(block.get(2), Element::Rev(0)); |
|
771 | 771 | assert_eq!(block.get(4), Element::Rev(1)); |
|
772 | 772 | } |
|
773 | 773 | |
|
774 | 774 | type TestIndex = HashMap<Revision, Node>; |
|
775 | 775 | |
|
776 | 776 | impl RevlogIndex for TestIndex { |
|
777 | 777 | fn node(&self, rev: Revision) -> Option<&Node> { |
|
778 | 778 | self.get(&rev) |
|
779 | 779 | } |
|
780 | 780 | |
|
781 | 781 | fn len(&self) -> usize { |
|
782 | 782 | self.len() |
|
783 | 783 | } |
|
784 | 784 | } |
|
785 | 785 | |
|
786 | 786 | /// Pad hexadecimal Node prefix with zeros on the right |
|
787 | 787 | /// |
|
788 | 788 | /// This avoids having to repeatedly write very long hexadecimal |
|
789 | 789 | /// strings for test data, and brings actual hash size independency. |
|
790 | 790 | #[cfg(test)] |
|
791 | 791 | fn pad_node(hex: &str) -> Node { |
|
792 | 792 | Node::from_hex(&hex_pad_right(hex)).unwrap() |
|
793 | 793 | } |
|
794 | 794 | |
|
795 | 795 | /// Pad hexadecimal Node prefix with zeros on the right, then insert |
|
796 | 796 | fn pad_insert(idx: &mut TestIndex, rev: Revision, hex: &str) { |
|
797 | 797 | idx.insert(rev, pad_node(hex)); |
|
798 | 798 | } |
|
799 | 799 | |
|
800 | 800 | fn sample_nodetree() -> NodeTree { |
|
801 | 801 | NodeTree::from(vec![ |
|
802 | 802 | block![0: Rev(9)], |
|
803 | 803 | block![0: Rev(0), 1: Rev(9)], |
|
804 | 804 | block![0: Block(1), 1:Rev(1)], |
|
805 | 805 | ]) |
|
806 | 806 | } |
|
807 | 807 | |
|
808 | 808 | #[test] |
|
809 | 809 | fn test_nt_debug() { |
|
810 | 810 | let nt = sample_nodetree(); |
|
811 | 811 | assert_eq!( |
|
812 | 812 | format!("{:?}", nt), |
|
813 | 813 | "readonly: \ |
|
814 | 814 | [{0: Rev(9)}, {0: Rev(0), 1: Rev(9)}, {0: Block(1), 1: Rev(1)}], \ |
|
815 | 815 | growable: [], \ |
|
816 | 816 | root: {0: Block(1), 1: Rev(1)}", |
|
817 | 817 | ); |
|
818 | 818 | } |
|
819 | 819 | |
|
820 | 820 | #[test] |
|
821 | 821 | fn test_immutable_find_simplest() -> Result<(), NodeMapError> { |
|
822 | 822 | let mut idx: TestIndex = HashMap::new(); |
|
823 | 823 | pad_insert(&mut idx, 1, "1234deadcafe"); |
|
824 | 824 | |
|
825 | 825 | let nt = NodeTree::from(vec![block! {1: Rev(1)}]); |
|
826 | 826 | assert_eq!(nt.find_hex(&idx, "1")?, Some(1)); |
|
827 | 827 | assert_eq!(nt.find_hex(&idx, "12")?, Some(1)); |
|
828 | 828 | assert_eq!(nt.find_hex(&idx, "1234de")?, Some(1)); |
|
829 | 829 | assert_eq!(nt.find_hex(&idx, "1a")?, None); |
|
830 | 830 | assert_eq!(nt.find_hex(&idx, "ab")?, None); |
|
831 | 831 | |
|
832 | 832 | // and with full binary Nodes |
|
833 | 833 | assert_eq!(nt.find_node(&idx, idx.get(&1).unwrap())?, Some(1)); |
|
834 | 834 | let unknown = Node::from_hex(&hex_pad_right("3d")).unwrap(); |
|
835 | 835 | assert_eq!(nt.find_node(&idx, &unknown)?, None); |
|
836 | 836 | Ok(()) |
|
837 | 837 | } |
|
838 | 838 | |
|
839 | 839 | #[test] |
|
840 | 840 | fn test_immutable_find_one_jump() { |
|
841 | 841 | let mut idx = TestIndex::new(); |
|
842 | 842 | pad_insert(&mut idx, 9, "012"); |
|
843 | 843 | pad_insert(&mut idx, 0, "00a"); |
|
844 | 844 | |
|
845 | 845 | let nt = sample_nodetree(); |
|
846 | 846 | |
|
847 | 847 | assert_eq!(nt.find_hex(&idx, "0"), Err(MultipleResults)); |
|
848 | 848 | assert_eq!(nt.find_hex(&idx, "01"), Ok(Some(9))); |
|
849 | 849 | assert_eq!(nt.find_hex(&idx, "00"), Err(MultipleResults)); |
|
850 | 850 | assert_eq!(nt.find_hex(&idx, "00a"), Ok(Some(0))); |
|
851 | 851 | assert_eq!(nt.unique_prefix_len_hex(&idx, "00a"), Ok(Some(3))); |
|
852 | 852 | assert_eq!(nt.find_hex(&idx, "000"), Ok(Some(NULL_REVISION))); |
|
853 | 853 | } |
|
854 | 854 | |
|
855 | 855 | #[test] |
|
856 | 856 | fn test_mutated_find() -> Result<(), NodeMapError> { |
|
857 | 857 | let mut idx = TestIndex::new(); |
|
858 | 858 | pad_insert(&mut idx, 9, "012"); |
|
859 | 859 | pad_insert(&mut idx, 0, "00a"); |
|
860 | 860 | pad_insert(&mut idx, 2, "cafe"); |
|
861 | 861 | pad_insert(&mut idx, 3, "15"); |
|
862 | 862 | pad_insert(&mut idx, 1, "10"); |
|
863 | 863 | |
|
864 | 864 | let nt = NodeTree { |
|
865 | 865 | readonly: sample_nodetree().readonly, |
|
866 | 866 | growable: vec![block![0: Rev(1), 5: Rev(3)]], |
|
867 | 867 | root: block![0: Block(1), 1:Block(3), 12: Rev(2)], |
|
868 | 868 | masked_inner_blocks: 1, |
|
869 | 869 | }; |
|
870 | 870 | assert_eq!(nt.find_hex(&idx, "10")?, Some(1)); |
|
871 | 871 | assert_eq!(nt.find_hex(&idx, "c")?, Some(2)); |
|
872 | 872 | assert_eq!(nt.unique_prefix_len_hex(&idx, "c")?, Some(1)); |
|
873 | 873 | assert_eq!(nt.find_hex(&idx, "00"), Err(MultipleResults)); |
|
874 | 874 | assert_eq!(nt.find_hex(&idx, "000")?, Some(NULL_REVISION)); |
|
875 | 875 | assert_eq!(nt.unique_prefix_len_hex(&idx, "000")?, Some(3)); |
|
876 | 876 | assert_eq!(nt.find_hex(&idx, "01")?, Some(9)); |
|
877 | 877 | assert_eq!(nt.masked_readonly_blocks(), 2); |
|
878 | 878 | Ok(()) |
|
879 | 879 | } |
|
880 | 880 | |
|
881 | 881 | struct TestNtIndex { |
|
882 | 882 | index: TestIndex, |
|
883 | 883 | nt: NodeTree, |
|
884 | 884 | } |
|
885 | 885 | |
|
886 | 886 | impl TestNtIndex { |
|
887 | 887 | fn new() -> Self { |
|
888 | 888 | TestNtIndex { |
|
889 | 889 | index: HashMap::new(), |
|
890 | 890 | nt: NodeTree::default(), |
|
891 | 891 | } |
|
892 | 892 | } |
|
893 | 893 | |
|
894 | 894 | fn insert( |
|
895 | 895 | &mut self, |
|
896 | 896 | rev: Revision, |
|
897 | 897 | hex: &str, |
|
898 | 898 | ) -> Result<(), NodeMapError> { |
|
899 | 899 | let node = pad_node(hex); |
|
900 | 900 | self.index.insert(rev, node.clone()); |
|
901 | 901 | self.nt.insert(&self.index, &node, rev)?; |
|
902 | 902 | Ok(()) |
|
903 | 903 | } |
|
904 | 904 | |
|
905 | 905 | fn find_hex( |
|
906 | 906 | &self, |
|
907 | 907 | prefix: &str, |
|
908 | 908 | ) -> Result<Option<Revision>, NodeMapError> { |
|
909 | 909 | self.nt.find_hex(&self.index, prefix) |
|
910 | 910 | } |
|
911 | 911 | |
|
912 | 912 | fn unique_prefix_len_hex( |
|
913 | 913 | &self, |
|
914 | 914 | prefix: &str, |
|
915 | 915 | ) -> Result<Option<usize>, NodeMapError> { |
|
916 | 916 | self.nt.unique_prefix_len_hex(&self.index, prefix) |
|
917 | 917 | } |
|
918 | 918 | |
|
919 | 919 | /// Drain `added` and restart a new one |
|
920 | 920 | fn commit(self) -> Self { |
|
921 | 921 | let mut as_vec: Vec<Block> = |
|
922 | 922 | self.nt.readonly.iter().map(|block| block.clone()).collect(); |
|
923 | 923 | as_vec.extend(self.nt.growable); |
|
924 | 924 | as_vec.push(self.nt.root); |
|
925 | 925 | |
|
926 | 926 | Self { |
|
927 | 927 | index: self.index, |
|
928 | 928 | nt: NodeTree::from(as_vec).into(), |
|
929 | 929 | } |
|
930 | 930 | } |
|
931 | 931 | } |
|
932 | 932 | |
|
933 | 933 | #[test] |
|
934 | 934 | fn test_insert_full_mutable() -> Result<(), NodeMapError> { |
|
935 | 935 | let mut idx = TestNtIndex::new(); |
|
936 | 936 | idx.insert(0, "1234")?; |
|
937 | 937 | assert_eq!(idx.find_hex("1")?, Some(0)); |
|
938 | 938 | assert_eq!(idx.find_hex("12")?, Some(0)); |
|
939 | 939 | |
|
940 | 940 | // let's trigger a simple split |
|
941 | 941 | idx.insert(1, "1a34")?; |
|
942 | 942 | assert_eq!(idx.nt.growable.len(), 1); |
|
943 | 943 | assert_eq!(idx.find_hex("12")?, Some(0)); |
|
944 | 944 | assert_eq!(idx.find_hex("1a")?, Some(1)); |
|
945 | 945 | |
|
946 | 946 | // reinserting is a no_op |
|
947 | 947 | idx.insert(1, "1a34")?; |
|
948 | 948 | assert_eq!(idx.nt.growable.len(), 1); |
|
949 | 949 | assert_eq!(idx.find_hex("12")?, Some(0)); |
|
950 | 950 | assert_eq!(idx.find_hex("1a")?, Some(1)); |
|
951 | 951 | |
|
952 | 952 | idx.insert(2, "1a01")?; |
|
953 | 953 | assert_eq!(idx.nt.growable.len(), 2); |
|
954 | 954 | assert_eq!(idx.find_hex("1a"), Err(NodeMapError::MultipleResults)); |
|
955 | 955 | assert_eq!(idx.find_hex("12")?, Some(0)); |
|
956 | 956 | assert_eq!(idx.find_hex("1a3")?, Some(1)); |
|
957 | 957 | assert_eq!(idx.find_hex("1a0")?, Some(2)); |
|
958 | 958 | assert_eq!(idx.find_hex("1a12")?, None); |
|
959 | 959 | |
|
960 | 960 | // now let's make it split and create more than one additional block |
|
961 | 961 | idx.insert(3, "1a345")?; |
|
962 | 962 | assert_eq!(idx.nt.growable.len(), 4); |
|
963 | 963 | assert_eq!(idx.find_hex("1a340")?, Some(1)); |
|
964 | 964 | assert_eq!(idx.find_hex("1a345")?, Some(3)); |
|
965 | 965 | assert_eq!(idx.find_hex("1a341")?, None); |
|
966 | 966 | |
|
967 | 967 | // there's no readonly block to mask |
|
968 | 968 | assert_eq!(idx.nt.masked_readonly_blocks(), 0); |
|
969 | 969 | Ok(()) |
|
970 | 970 | } |
|
971 | 971 | |
|
972 | 972 | #[test] |
|
973 | 973 | fn test_unique_prefix_len_zero_prefix() { |
|
974 | 974 | let mut idx = TestNtIndex::new(); |
|
975 | 975 | idx.insert(0, "00000abcd").unwrap(); |
|
976 | 976 | |
|
977 | 977 | assert_eq!(idx.find_hex("000"), Err(NodeMapError::MultipleResults)); |
|
978 | 978 | // in the nodetree proper, this will be found at the first nybble |
|
979 | 979 | // yet the correct answer for unique_prefix_len is not 1, nor 1+1, |
|
980 | 980 | // but the first difference with `NULL_NODE` |
|
981 | 981 | assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6))); |
|
982 | 982 | assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6))); |
|
983 | 983 | |
|
984 | 984 | // same with odd result |
|
985 | 985 | idx.insert(1, "00123").unwrap(); |
|
986 | 986 | assert_eq!(idx.unique_prefix_len_hex("001"), Ok(Some(3))); |
|
987 | 987 | assert_eq!(idx.unique_prefix_len_hex("0012"), Ok(Some(3))); |
|
988 | 988 | |
|
989 | 989 | // these are unchanged of course |
|
990 | 990 | assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6))); |
|
991 | 991 | assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6))); |
|
992 | 992 | } |
|
993 | 993 | |
|
994 | 994 | #[test] |
|
995 | 995 | fn test_insert_extreme_splitting() -> Result<(), NodeMapError> { |
|
996 | 996 | // check that the splitting loop is long enough |
|
997 | 997 | let mut nt_idx = TestNtIndex::new(); |
|
998 | 998 | let nt = &mut nt_idx.nt; |
|
999 | 999 | let idx = &mut nt_idx.index; |
|
1000 | 1000 | |
|
1001 | 1001 | let node0_hex = hex_pad_right("444444"); |
|
1002 | 1002 | let mut node1_hex = hex_pad_right("444444").clone(); |
|
1003 | 1003 | node1_hex.pop(); |
|
1004 | 1004 | node1_hex.push('5'); |
|
1005 | 1005 | let node0 = Node::from_hex(&node0_hex).unwrap(); |
|
1006 | 1006 | let node1 = Node::from_hex(&node1_hex).unwrap(); |
|
1007 | 1007 | |
|
1008 | 1008 | idx.insert(0, node0.clone()); |
|
1009 | 1009 | nt.insert(idx, &node0, 0)?; |
|
1010 | 1010 | idx.insert(1, node1.clone()); |
|
1011 | 1011 | nt.insert(idx, &node1, 1)?; |
|
1012 | 1012 | |
|
1013 | 1013 | assert_eq!(nt.find_bin(idx, (&node0).into())?, Some(0)); |
|
1014 | 1014 | assert_eq!(nt.find_bin(idx, (&node1).into())?, Some(1)); |
|
1015 | 1015 | Ok(()) |
|
1016 | 1016 | } |
|
1017 | 1017 | |
|
1018 | 1018 | #[test] |
|
1019 | 1019 | fn test_insert_partly_immutable() -> Result<(), NodeMapError> { |
|
1020 | 1020 | let mut idx = TestNtIndex::new(); |
|
1021 | 1021 | idx.insert(0, "1234")?; |
|
1022 | 1022 | idx.insert(1, "1235")?; |
|
1023 | 1023 | idx.insert(2, "131")?; |
|
1024 | 1024 | idx.insert(3, "cafe")?; |
|
1025 | 1025 | let mut idx = idx.commit(); |
|
1026 | 1026 | assert_eq!(idx.find_hex("1234")?, Some(0)); |
|
1027 | 1027 | assert_eq!(idx.find_hex("1235")?, Some(1)); |
|
1028 | 1028 | assert_eq!(idx.find_hex("131")?, Some(2)); |
|
1029 | 1029 | assert_eq!(idx.find_hex("cafe")?, Some(3)); |
|
1030 | 1030 | // we did not add anything since init from readonly |
|
1031 | 1031 | assert_eq!(idx.nt.masked_readonly_blocks(), 0); |
|
1032 | 1032 | |
|
1033 | 1033 | idx.insert(4, "123A")?; |
|
1034 | 1034 | assert_eq!(idx.find_hex("1234")?, Some(0)); |
|
1035 | 1035 | assert_eq!(idx.find_hex("1235")?, Some(1)); |
|
1036 | 1036 | assert_eq!(idx.find_hex("131")?, Some(2)); |
|
1037 | 1037 | assert_eq!(idx.find_hex("cafe")?, Some(3)); |
|
1038 | 1038 | assert_eq!(idx.find_hex("123A")?, Some(4)); |
|
1039 | 1039 | // we masked blocks for all prefixes of "123", including the root |
|
1040 | 1040 | assert_eq!(idx.nt.masked_readonly_blocks(), 4); |
|
1041 | 1041 | |
|
1042 | 1042 | eprintln!("{:?}", idx.nt); |
|
1043 | 1043 | idx.insert(5, "c0")?; |
|
1044 | 1044 | assert_eq!(idx.find_hex("cafe")?, Some(3)); |
|
1045 | 1045 | assert_eq!(idx.find_hex("c0")?, Some(5)); |
|
1046 | 1046 | assert_eq!(idx.find_hex("c1")?, None); |
|
1047 | 1047 | assert_eq!(idx.find_hex("1234")?, Some(0)); |
|
1048 | 1048 | // inserting "c0" is just splitting the 'c' slot of the mutable root, |
|
1049 | 1049 | // it doesn't mask anything |
|
1050 | 1050 | assert_eq!(idx.nt.masked_readonly_blocks(), 4); |
|
1051 | 1051 | |
|
1052 | 1052 | Ok(()) |
|
1053 | 1053 | } |
|
1054 | 1054 | |
|
1055 | 1055 | #[test] |
|
1056 | 1056 | fn test_invalidate_all() -> Result<(), NodeMapError> { |
|
1057 | 1057 | let mut idx = TestNtIndex::new(); |
|
1058 | 1058 | idx.insert(0, "1234")?; |
|
1059 | 1059 | idx.insert(1, "1235")?; |
|
1060 | 1060 | idx.insert(2, "131")?; |
|
1061 | 1061 | idx.insert(3, "cafe")?; |
|
1062 | 1062 | let mut idx = idx.commit(); |
|
1063 | 1063 | |
|
1064 | 1064 | idx.nt.invalidate_all(); |
|
1065 | 1065 | |
|
1066 | 1066 | assert_eq!(idx.find_hex("1234")?, None); |
|
1067 | 1067 | assert_eq!(idx.find_hex("1235")?, None); |
|
1068 | 1068 | assert_eq!(idx.find_hex("131")?, None); |
|
1069 | 1069 | assert_eq!(idx.find_hex("cafe")?, None); |
|
1070 | 1070 | // all the readonly blocks have been masked, this is the |
|
1071 | 1071 | // conventional expected response |
|
1072 | 1072 | assert_eq!(idx.nt.masked_readonly_blocks(), idx.nt.readonly.len() + 1); |
|
1073 | 1073 | Ok(()) |
|
1074 | 1074 | } |
|
1075 | 1075 | |
|
1076 | 1076 | #[test] |
|
1077 | 1077 | fn test_into_added_empty() { |
|
1078 | 1078 | assert!(sample_nodetree().into_readonly_and_added().1.is_empty()); |
|
1079 | 1079 | assert!(sample_nodetree() |
|
1080 | 1080 | .into_readonly_and_added_bytes() |
|
1081 | 1081 | .1 |
|
1082 | 1082 | .is_empty()); |
|
1083 | 1083 | } |
|
1084 | 1084 | |
|
1085 | 1085 | #[test] |
|
1086 | 1086 | fn test_into_added_bytes() -> Result<(), NodeMapError> { |
|
1087 | 1087 | let mut idx = TestNtIndex::new(); |
|
1088 | 1088 | idx.insert(0, "1234")?; |
|
1089 | 1089 | let mut idx = idx.commit(); |
|
1090 | 1090 | idx.insert(4, "cafe")?; |
|
1091 | 1091 | let (_, bytes) = idx.nt.into_readonly_and_added_bytes(); |
|
1092 | 1092 | |
|
1093 | 1093 | // only the root block has been changed |
|
1094 | 1094 | assert_eq!(bytes.len(), size_of::<Block>()); |
|
1095 | 1095 | // big endian for -2 |
|
1096 | 1096 | assert_eq!(&bytes[4..2 * 4], [255, 255, 255, 254]); |
|
1097 | 1097 | // big endian for -6 |
|
1098 | 1098 | assert_eq!(&bytes[12 * 4..13 * 4], [255, 255, 255, 250]); |
|
1099 | 1099 | Ok(()) |
|
1100 | 1100 | } |
|
1101 | 1101 | } |
@@ -1,496 +1,491 b'' | |||
|
1 | 1 | // revlog.rs |
|
2 | 2 | // |
|
3 | 3 | // Copyright 2019-2020 Georges Racinet <georges.racinet@octobus.net> |
|
4 | 4 | // |
|
5 | 5 | // This software may be used and distributed according to the terms of the |
|
6 | 6 | // GNU General Public License version 2 or any later version. |
|
7 | 7 | |
|
8 | 8 | use crate::{ |
|
9 | 9 | cindex, |
|
10 | 10 | utils::{node_from_py_bytes, node_from_py_object}, |
|
11 | 11 | }; |
|
12 | 12 | use cpython::{ |
|
13 | 13 | buffer::{Element, PyBuffer}, |
|
14 | 14 | exc::{IndexError, ValueError}, |
|
15 | 15 | ObjectProtocol, PyBytes, PyClone, PyDict, PyErr, PyModule, PyObject, |
|
16 | 16 | PyResult, PyString, PyTuple, Python, PythonObject, ToPyObject, |
|
17 | 17 | }; |
|
18 | 18 | use hg::{ |
|
19 | 19 | nodemap::{Block, NodeMapError, NodeTree}, |
|
20 | 20 | revlog::{nodemap::NodeMap, RevlogIndex}, |
|
21 |
|
|
|
21 | Revision, | |
|
22 | 22 | }; |
|
23 | 23 | use std::cell::RefCell; |
|
24 | 24 | |
|
25 | 25 | /// Return a Struct implementing the Graph trait |
|
26 | 26 | pub(crate) fn pyindex_to_graph( |
|
27 | 27 | py: Python, |
|
28 | 28 | index: PyObject, |
|
29 | 29 | ) -> PyResult<cindex::Index> { |
|
30 | 30 | match index.extract::<MixedIndex>(py) { |
|
31 | 31 | Ok(midx) => Ok(midx.clone_cindex(py)), |
|
32 | 32 | Err(_) => cindex::Index::new(py, index), |
|
33 | 33 | } |
|
34 | 34 | } |
|
35 | 35 | |
|
36 | 36 | py_class!(pub class MixedIndex |py| { |
|
37 | 37 | data cindex: RefCell<cindex::Index>; |
|
38 | 38 | data nt: RefCell<Option<NodeTree>>; |
|
39 | 39 | data docket: RefCell<Option<PyObject>>; |
|
40 | 40 | // Holds a reference to the mmap'ed persistent nodemap data |
|
41 | 41 | data mmap: RefCell<Option<PyBuffer>>; |
|
42 | 42 | |
|
43 | 43 | def __new__(_cls, cindex: PyObject) -> PyResult<MixedIndex> { |
|
44 | 44 | Self::new(py, cindex) |
|
45 | 45 | } |
|
46 | 46 | |
|
47 | 47 | /// Compatibility layer used for Python consumers needing access to the C index |
|
48 | 48 | /// |
|
49 | 49 | /// Only use case so far is `scmutil.shortesthexnodeidprefix`, |
|
50 | 50 | /// that may need to build a custom `nodetree`, based on a specified revset. |
|
51 | 51 | /// With a Rust implementation of the nodemap, we will be able to get rid of |
|
52 | 52 | /// this, by exposing our own standalone nodemap class, |
|
53 | 53 | /// ready to accept `MixedIndex`. |
|
54 | 54 | def get_cindex(&self) -> PyResult<PyObject> { |
|
55 | 55 | Ok(self.cindex(py).borrow().inner().clone_ref(py)) |
|
56 | 56 | } |
|
57 | 57 | |
|
58 | 58 | // Index API involving nodemap, as defined in mercurial/pure/parsers.py |
|
59 | 59 | |
|
60 | 60 | /// Return Revision if found, raises a bare `error.RevlogError` |
|
61 | 61 | /// in case of ambiguity, same as C version does |
|
62 | 62 | def get_rev(&self, node: PyBytes) -> PyResult<Option<Revision>> { |
|
63 | 63 | let opt = self.get_nodetree(py)?.borrow(); |
|
64 | 64 | let nt = opt.as_ref().unwrap(); |
|
65 | 65 | let idx = &*self.cindex(py).borrow(); |
|
66 | 66 | let node = node_from_py_bytes(py, &node)?; |
|
67 | 67 | nt.find_bin(idx, (&node).into()).map_err(|e| nodemap_error(py, e)) |
|
68 | 68 | } |
|
69 | 69 | |
|
70 | 70 | /// same as `get_rev()` but raises a bare `error.RevlogError` if node |
|
71 | 71 | /// is not found. |
|
72 | 72 | /// |
|
73 | 73 | /// No need to repeat `node` in the exception, `mercurial/revlog.py` |
|
74 | 74 | /// will catch and rewrap with it |
|
75 | 75 | def rev(&self, node: PyBytes) -> PyResult<Revision> { |
|
76 | 76 | self.get_rev(py, node)?.ok_or_else(|| revlog_error(py)) |
|
77 | 77 | } |
|
78 | 78 | |
|
79 | 79 | /// return True if the node exist in the index |
|
80 | 80 | def has_node(&self, node: PyBytes) -> PyResult<bool> { |
|
81 | 81 | self.get_rev(py, node).map(|opt| opt.is_some()) |
|
82 | 82 | } |
|
83 | 83 | |
|
84 | 84 | /// find length of shortest hex nodeid of a binary ID |
|
85 | 85 | def shortest(&self, node: PyBytes) -> PyResult<usize> { |
|
86 | 86 | let opt = self.get_nodetree(py)?.borrow(); |
|
87 | 87 | let nt = opt.as_ref().unwrap(); |
|
88 | 88 | let idx = &*self.cindex(py).borrow(); |
|
89 | 89 | match nt.unique_prefix_len_node(idx, &node_from_py_bytes(py, &node)?) |
|
90 | 90 | { |
|
91 | 91 | Ok(Some(l)) => Ok(l), |
|
92 | 92 | Ok(None) => Err(revlog_error(py)), |
|
93 | 93 | Err(e) => Err(nodemap_error(py, e)), |
|
94 | 94 | } |
|
95 | 95 | } |
|
96 | 96 | |
|
97 | 97 | def partialmatch(&self, node: PyObject) -> PyResult<Option<PyBytes>> { |
|
98 | 98 | let opt = self.get_nodetree(py)?.borrow(); |
|
99 | 99 | let nt = opt.as_ref().unwrap(); |
|
100 | 100 | let idx = &*self.cindex(py).borrow(); |
|
101 | 101 | |
|
102 | 102 | let node_as_string = if cfg!(feature = "python3-sys") { |
|
103 | 103 | node.cast_as::<PyString>(py)?.to_string(py)?.to_string() |
|
104 | 104 | } |
|
105 | 105 | else { |
|
106 | 106 | let node = node.extract::<PyBytes>(py)?; |
|
107 | 107 | String::from_utf8_lossy(node.data(py)).to_string() |
|
108 | 108 | }; |
|
109 | 109 | |
|
110 | 110 | nt.find_hex(idx, &node_as_string) |
|
111 | 111 | // TODO make an inner API returning the node directly |
|
112 | 112 | .map(|opt| opt.map( |
|
113 | 113 | |rev| PyBytes::new(py, idx.node(rev).unwrap().as_bytes()))) |
|
114 | 114 | .map_err(|e| nodemap_error(py, e)) |
|
115 | 115 | |
|
116 | 116 | } |
|
117 | 117 | |
|
118 | 118 | /// append an index entry |
|
119 | 119 | def append(&self, tup: PyTuple) -> PyResult<PyObject> { |
|
120 | 120 | if tup.len(py) < 8 { |
|
121 | 121 | // this is better than the panic promised by tup.get_item() |
|
122 | 122 | return Err( |
|
123 | 123 | PyErr::new::<IndexError, _>(py, "tuple index out of range")) |
|
124 | 124 | } |
|
125 | 125 | let node_bytes = tup.get_item(py, 7).extract(py)?; |
|
126 | 126 | let node = node_from_py_object(py, &node_bytes)?; |
|
127 | 127 | |
|
128 | 128 | let mut idx = self.cindex(py).borrow_mut(); |
|
129 | 129 | let rev = idx.len() as Revision; |
|
130 | 130 | |
|
131 | 131 | idx.append(py, tup)?; |
|
132 | 132 | self.get_nodetree(py)?.borrow_mut().as_mut().unwrap() |
|
133 | 133 | .insert(&*idx, &node, rev) |
|
134 | 134 | .map_err(|e| nodemap_error(py, e))?; |
|
135 | 135 | Ok(py.None()) |
|
136 | 136 | } |
|
137 | 137 | |
|
138 | 138 | def __delitem__(&self, key: PyObject) -> PyResult<()> { |
|
139 | 139 | // __delitem__ is both for `del idx[r]` and `del idx[r1:r2]` |
|
140 | 140 | self.cindex(py).borrow().inner().del_item(py, key)?; |
|
141 | 141 | let mut opt = self.get_nodetree(py)?.borrow_mut(); |
|
142 | 142 | let mut nt = opt.as_mut().unwrap(); |
|
143 | 143 | nt.invalidate_all(); |
|
144 | 144 | self.fill_nodemap(py, &mut nt)?; |
|
145 | 145 | Ok(()) |
|
146 | 146 | } |
|
147 | 147 | |
|
148 | 148 | // |
|
149 | 149 | // Reforwarded C index API |
|
150 | 150 | // |
|
151 | 151 | |
|
152 | 152 | // index_methods (tp_methods). Same ordering as in revlog.c |
|
153 | 153 | |
|
154 | 154 | /// return the gca set of the given revs |
|
155 | 155 | def ancestors(&self, *args, **kw) -> PyResult<PyObject> { |
|
156 | 156 | self.call_cindex(py, "ancestors", args, kw) |
|
157 | 157 | } |
|
158 | 158 | |
|
159 | 159 | /// return the heads of the common ancestors of the given revs |
|
160 | 160 | def commonancestorsheads(&self, *args, **kw) -> PyResult<PyObject> { |
|
161 | 161 | self.call_cindex(py, "commonancestorsheads", args, kw) |
|
162 | 162 | } |
|
163 | 163 | |
|
164 | 164 | /// Clear the index caches and inner py_class data. |
|
165 | 165 | /// It is Python's responsibility to call `update_nodemap_data` again. |
|
166 | 166 | def clearcaches(&self, *args, **kw) -> PyResult<PyObject> { |
|
167 | 167 | self.nt(py).borrow_mut().take(); |
|
168 | 168 | self.docket(py).borrow_mut().take(); |
|
169 | 169 | self.mmap(py).borrow_mut().take(); |
|
170 | 170 | self.call_cindex(py, "clearcaches", args, kw) |
|
171 | 171 | } |
|
172 | 172 | |
|
173 | 173 | /// get an index entry |
|
174 | 174 | def get(&self, *args, **kw) -> PyResult<PyObject> { |
|
175 | 175 | self.call_cindex(py, "get", args, kw) |
|
176 | 176 | } |
|
177 | 177 | |
|
178 | 178 | /// compute phases |
|
179 | 179 | def computephasesmapsets(&self, *args, **kw) -> PyResult<PyObject> { |
|
180 | 180 | self.call_cindex(py, "computephasesmapsets", args, kw) |
|
181 | 181 | } |
|
182 | 182 | |
|
183 | 183 | /// reachableroots |
|
184 | 184 | def reachableroots2(&self, *args, **kw) -> PyResult<PyObject> { |
|
185 | 185 | self.call_cindex(py, "reachableroots2", args, kw) |
|
186 | 186 | } |
|
187 | 187 | |
|
188 | 188 | /// get head revisions |
|
189 | 189 | def headrevs(&self, *args, **kw) -> PyResult<PyObject> { |
|
190 | 190 | self.call_cindex(py, "headrevs", args, kw) |
|
191 | 191 | } |
|
192 | 192 | |
|
193 | 193 | /// get filtered head revisions |
|
194 | 194 | def headrevsfiltered(&self, *args, **kw) -> PyResult<PyObject> { |
|
195 | 195 | self.call_cindex(py, "headrevsfiltered", args, kw) |
|
196 | 196 | } |
|
197 | 197 | |
|
198 | 198 | /// True if the object is a snapshot |
|
199 | 199 | def issnapshot(&self, *args, **kw) -> PyResult<PyObject> { |
|
200 | 200 | self.call_cindex(py, "issnapshot", args, kw) |
|
201 | 201 | } |
|
202 | 202 | |
|
203 | 203 | /// Gather snapshot data in a cache dict |
|
204 | 204 | def findsnapshots(&self, *args, **kw) -> PyResult<PyObject> { |
|
205 | 205 | self.call_cindex(py, "findsnapshots", args, kw) |
|
206 | 206 | } |
|
207 | 207 | |
|
208 | 208 | /// determine revisions with deltas to reconstruct fulltext |
|
209 | 209 | def deltachain(&self, *args, **kw) -> PyResult<PyObject> { |
|
210 | 210 | self.call_cindex(py, "deltachain", args, kw) |
|
211 | 211 | } |
|
212 | 212 | |
|
213 | 213 | /// slice planned chunk read to reach a density threshold |
|
214 | 214 | def slicechunktodensity(&self, *args, **kw) -> PyResult<PyObject> { |
|
215 | 215 | self.call_cindex(py, "slicechunktodensity", args, kw) |
|
216 | 216 | } |
|
217 | 217 | |
|
218 | 218 | /// stats for the index |
|
219 | 219 | def stats(&self, *args, **kw) -> PyResult<PyObject> { |
|
220 | 220 | self.call_cindex(py, "stats", args, kw) |
|
221 | 221 | } |
|
222 | 222 | |
|
223 | 223 | // index_sequence_methods and index_mapping_methods. |
|
224 | 224 | // |
|
225 | 225 | // Since we call back through the high level Python API, |
|
226 | 226 | // there's no point making a distinction between index_get |
|
227 | 227 | // and index_getitem. |
|
228 | 228 | |
|
229 | 229 | def __len__(&self) -> PyResult<usize> { |
|
230 | 230 | self.cindex(py).borrow().inner().len(py) |
|
231 | 231 | } |
|
232 | 232 | |
|
233 | 233 | def __getitem__(&self, key: PyObject) -> PyResult<PyObject> { |
|
234 | 234 | // this conversion seems needless, but that's actually because |
|
235 | 235 | // `index_getitem` does not handle conversion from PyLong, |
|
236 | 236 | // which expressions such as [e for e in index] internally use. |
|
237 | 237 | // Note that we don't seem to have a direct way to call |
|
238 | 238 | // PySequence_GetItem (does the job), which would possibly be better |
|
239 | 239 | // for performance |
|
240 | 240 | let key = match key.extract::<Revision>(py) { |
|
241 | 241 | Ok(rev) => rev.to_py_object(py).into_object(), |
|
242 | 242 | Err(_) => key, |
|
243 | 243 | }; |
|
244 | 244 | self.cindex(py).borrow().inner().get_item(py, key) |
|
245 | 245 | } |
|
246 | 246 | |
|
247 | 247 | def __setitem__(&self, key: PyObject, value: PyObject) -> PyResult<()> { |
|
248 | 248 | self.cindex(py).borrow().inner().set_item(py, key, value) |
|
249 | 249 | } |
|
250 | 250 | |
|
251 | 251 | def __contains__(&self, item: PyObject) -> PyResult<bool> { |
|
252 | 252 | // ObjectProtocol does not seem to provide contains(), so |
|
253 | 253 | // this is an equivalent implementation of the index_contains() |
|
254 | 254 | // defined in revlog.c |
|
255 | 255 | let cindex = self.cindex(py).borrow(); |
|
256 | 256 | match item.extract::<Revision>(py) { |
|
257 | 257 | Ok(rev) => { |
|
258 | 258 | Ok(rev >= -1 && rev < cindex.inner().len(py)? as Revision) |
|
259 | 259 | } |
|
260 | 260 | Err(_) => { |
|
261 | 261 | cindex.inner().call_method( |
|
262 | 262 | py, |
|
263 | 263 | "has_node", |
|
264 | 264 | PyTuple::new(py, &[item]), |
|
265 | 265 | None)? |
|
266 | 266 | .extract(py) |
|
267 | 267 | } |
|
268 | 268 | } |
|
269 | 269 | } |
|
270 | 270 | |
|
271 | 271 | def nodemap_data_all(&self) -> PyResult<PyBytes> { |
|
272 | 272 | self.inner_nodemap_data_all(py) |
|
273 | 273 | } |
|
274 | 274 | |
|
275 | 275 | def nodemap_data_incremental(&self) -> PyResult<PyObject> { |
|
276 | 276 | self.inner_nodemap_data_incremental(py) |
|
277 | 277 | } |
|
278 | 278 | def update_nodemap_data( |
|
279 | 279 | &self, |
|
280 | 280 | docket: PyObject, |
|
281 | 281 | nm_data: PyObject |
|
282 | 282 | ) -> PyResult<PyObject> { |
|
283 | 283 | self.inner_update_nodemap_data(py, docket, nm_data) |
|
284 | 284 | } |
|
285 | 285 | |
|
286 | 286 | |
|
287 | 287 | }); |
|
288 | 288 | |
|
289 | 289 | impl MixedIndex { |
|
290 | 290 | fn new(py: Python, cindex: PyObject) -> PyResult<MixedIndex> { |
|
291 | 291 | Self::create_instance( |
|
292 | 292 | py, |
|
293 | 293 | RefCell::new(cindex::Index::new(py, cindex)?), |
|
294 | 294 | RefCell::new(None), |
|
295 | 295 | RefCell::new(None), |
|
296 | 296 | RefCell::new(None), |
|
297 | 297 | ) |
|
298 | 298 | } |
|
299 | 299 | |
|
300 | 300 | /// This is scaffolding at this point, but it could also become |
|
301 | 301 | /// a way to start a persistent nodemap or perform a |
|
302 | 302 | /// vacuum / repack operation |
|
303 | 303 | fn fill_nodemap( |
|
304 | 304 | &self, |
|
305 | 305 | py: Python, |
|
306 | 306 | nt: &mut NodeTree, |
|
307 | 307 | ) -> PyResult<PyObject> { |
|
308 | 308 | let index = self.cindex(py).borrow(); |
|
309 | 309 | for r in 0..index.len() { |
|
310 | 310 | let rev = r as Revision; |
|
311 | 311 | // in this case node() won't ever return None |
|
312 | 312 | nt.insert(&*index, index.node(rev).unwrap(), rev) |
|
313 | 313 | .map_err(|e| nodemap_error(py, e))? |
|
314 | 314 | } |
|
315 | 315 | Ok(py.None()) |
|
316 | 316 | } |
|
317 | 317 | |
|
318 | 318 | fn get_nodetree<'a>( |
|
319 | 319 | &'a self, |
|
320 | 320 | py: Python<'a>, |
|
321 | 321 | ) -> PyResult<&'a RefCell<Option<NodeTree>>> { |
|
322 | 322 | if self.nt(py).borrow().is_none() { |
|
323 | 323 | let readonly = Box::new(Vec::new()); |
|
324 | 324 | let mut nt = NodeTree::load_bytes(readonly, 0); |
|
325 | 325 | self.fill_nodemap(py, &mut nt)?; |
|
326 | 326 | self.nt(py).borrow_mut().replace(nt); |
|
327 | 327 | } |
|
328 | 328 | Ok(self.nt(py)) |
|
329 | 329 | } |
|
330 | 330 | |
|
331 | 331 | /// forward a method call to the underlying C index |
|
332 | 332 | fn call_cindex( |
|
333 | 333 | &self, |
|
334 | 334 | py: Python, |
|
335 | 335 | name: &str, |
|
336 | 336 | args: &PyTuple, |
|
337 | 337 | kwargs: Option<&PyDict>, |
|
338 | 338 | ) -> PyResult<PyObject> { |
|
339 | 339 | self.cindex(py) |
|
340 | 340 | .borrow() |
|
341 | 341 | .inner() |
|
342 | 342 | .call_method(py, name, args, kwargs) |
|
343 | 343 | } |
|
344 | 344 | |
|
345 | 345 | pub fn clone_cindex(&self, py: Python) -> cindex::Index { |
|
346 | 346 | self.cindex(py).borrow().clone_ref(py) |
|
347 | 347 | } |
|
348 | 348 | |
|
349 | 349 | /// Returns the full nodemap bytes to be written as-is to disk |
|
350 | 350 | fn inner_nodemap_data_all(&self, py: Python) -> PyResult<PyBytes> { |
|
351 | 351 | let nodemap = self.get_nodetree(py)?.borrow_mut().take().unwrap(); |
|
352 | 352 | let (readonly, bytes) = nodemap.into_readonly_and_added_bytes(); |
|
353 | 353 | |
|
354 | 354 | // If there's anything readonly, we need to build the data again from |
|
355 | 355 | // scratch |
|
356 | 356 | let bytes = if readonly.len() > 0 { |
|
357 | 357 | let mut nt = NodeTree::load_bytes(Box::new(vec![]), 0); |
|
358 | 358 | self.fill_nodemap(py, &mut nt)?; |
|
359 | 359 | |
|
360 | 360 | let (readonly, bytes) = nt.into_readonly_and_added_bytes(); |
|
361 | 361 | assert_eq!(readonly.len(), 0); |
|
362 | 362 | |
|
363 | 363 | bytes |
|
364 | 364 | } else { |
|
365 | 365 | bytes |
|
366 | 366 | }; |
|
367 | 367 | |
|
368 | 368 | let bytes = PyBytes::new(py, &bytes); |
|
369 | 369 | Ok(bytes) |
|
370 | 370 | } |
|
371 | 371 | |
|
372 | 372 | /// Returns the last saved docket along with the size of any changed data |
|
373 | 373 | /// (in number of blocks), and said data as bytes. |
|
374 | 374 | fn inner_nodemap_data_incremental( |
|
375 | 375 | &self, |
|
376 | 376 | py: Python, |
|
377 | 377 | ) -> PyResult<PyObject> { |
|
378 | 378 | let docket = self.docket(py).borrow(); |
|
379 | 379 | let docket = match docket.as_ref() { |
|
380 | 380 | Some(d) => d, |
|
381 | 381 | None => return Ok(py.None()), |
|
382 | 382 | }; |
|
383 | 383 | |
|
384 | 384 | let node_tree = self.get_nodetree(py)?.borrow_mut().take().unwrap(); |
|
385 | 385 | let masked_blocks = node_tree.masked_readonly_blocks(); |
|
386 | 386 | let (_, data) = node_tree.into_readonly_and_added_bytes(); |
|
387 | 387 | let changed = masked_blocks * std::mem::size_of::<Block>(); |
|
388 | 388 | |
|
389 | 389 | Ok((docket, changed, PyBytes::new(py, &data)) |
|
390 | 390 | .to_py_object(py) |
|
391 | 391 | .into_object()) |
|
392 | 392 | } |
|
393 | 393 | |
|
394 | 394 | /// Update the nodemap from the new (mmaped) data. |
|
395 | 395 | /// The docket is kept as a reference for later incremental calls. |
|
396 | 396 | fn inner_update_nodemap_data( |
|
397 | 397 | &self, |
|
398 | 398 | py: Python, |
|
399 | 399 | docket: PyObject, |
|
400 | 400 | nm_data: PyObject, |
|
401 | 401 | ) -> PyResult<PyObject> { |
|
402 | 402 | let buf = PyBuffer::get(py, &nm_data)?; |
|
403 | 403 | let len = buf.item_count(); |
|
404 | 404 | |
|
405 | 405 | // Build a slice from the mmap'ed buffer data |
|
406 | 406 | let cbuf = buf.buf_ptr(); |
|
407 | 407 | let bytes = if std::mem::size_of::<u8>() == buf.item_size() |
|
408 | 408 | && buf.is_c_contiguous() |
|
409 | 409 | && u8::is_compatible_format(buf.format()) |
|
410 | 410 | { |
|
411 | 411 | unsafe { std::slice::from_raw_parts(cbuf as *const u8, len) } |
|
412 | 412 | } else { |
|
413 | 413 | return Err(PyErr::new::<ValueError, _>( |
|
414 | 414 | py, |
|
415 | 415 | "Nodemap data buffer has an invalid memory representation" |
|
416 | 416 | .to_string(), |
|
417 | 417 | )); |
|
418 | 418 | }; |
|
419 | 419 | |
|
420 | 420 | // Keep a reference to the mmap'ed buffer, otherwise we get a dangling |
|
421 | 421 | // pointer. |
|
422 | 422 | self.mmap(py).borrow_mut().replace(buf); |
|
423 | 423 | |
|
424 | 424 | let mut nt = NodeTree::load_bytes(Box::new(bytes), len); |
|
425 | 425 | |
|
426 | 426 | let data_tip = |
|
427 | 427 | docket.getattr(py, "tip_rev")?.extract::<Revision>(py)?; |
|
428 | 428 | self.docket(py).borrow_mut().replace(docket.clone_ref(py)); |
|
429 | 429 | let idx = self.cindex(py).borrow(); |
|
430 | 430 | let current_tip = idx.len(); |
|
431 | 431 | |
|
432 | 432 | for r in (data_tip + 1)..current_tip as Revision { |
|
433 | 433 | let rev = r as Revision; |
|
434 | 434 | // in this case node() won't ever return None |
|
435 | 435 | nt.insert(&*idx, idx.node(rev).unwrap(), rev) |
|
436 | 436 | .map_err(|e| nodemap_error(py, e))? |
|
437 | 437 | } |
|
438 | 438 | |
|
439 | 439 | *self.nt(py).borrow_mut() = Some(nt); |
|
440 | 440 | |
|
441 | 441 | Ok(py.None()) |
|
442 | 442 | } |
|
443 | 443 | } |
|
444 | 444 | |
|
445 | 445 | fn revlog_error(py: Python) -> PyErr { |
|
446 | 446 | match py |
|
447 | 447 | .import("mercurial.error") |
|
448 | 448 | .and_then(|m| m.get(py, "RevlogError")) |
|
449 | 449 | { |
|
450 | 450 | Err(e) => e, |
|
451 | 451 | Ok(cls) => PyErr::from_instance(py, cls), |
|
452 | 452 | } |
|
453 | 453 | } |
|
454 | 454 | |
|
455 | 455 | fn rev_not_in_index(py: Python, rev: Revision) -> PyErr { |
|
456 | 456 | PyErr::new::<ValueError, _>( |
|
457 | 457 | py, |
|
458 | 458 | format!( |
|
459 | 459 | "Inconsistency: Revision {} found in nodemap \ |
|
460 | 460 | is not in revlog index", |
|
461 | 461 | rev |
|
462 | 462 | ), |
|
463 | 463 | ) |
|
464 | 464 | } |
|
465 | 465 | |
|
466 | 466 | /// Standard treatment of NodeMapError |
|
467 | 467 | fn nodemap_error(py: Python, err: NodeMapError) -> PyErr { |
|
468 | 468 | match err { |
|
469 | 469 | NodeMapError::MultipleResults => revlog_error(py), |
|
470 | 470 | NodeMapError::RevisionNotInIndex(r) => rev_not_in_index(py, r), |
|
471 |
NodeMapError::InvalidNodePrefix |
|
|
471 | NodeMapError::InvalidNodePrefix => { | |
|
472 | PyErr::new::<ValueError, _>(py, "Invalid node or prefix") | |
|
473 | } | |
|
472 | 474 | } |
|
473 | 475 | } |
|
474 | 476 | |
|
475 | fn invalid_node_prefix(py: Python, ne: &NodeError) -> PyErr { | |
|
476 | PyErr::new::<ValueError, _>( | |
|
477 | py, | |
|
478 | format!("Invalid node or prefix: {:?}", ne), | |
|
479 | ) | |
|
480 | } | |
|
481 | ||
|
482 | 477 | /// Create the module, with __package__ given from parent |
|
483 | 478 | pub fn init_module(py: Python, package: &str) -> PyResult<PyModule> { |
|
484 | 479 | let dotted_name = &format!("{}.revlog", package); |
|
485 | 480 | let m = PyModule::new(py, dotted_name)?; |
|
486 | 481 | m.add(py, "__package__", package)?; |
|
487 | 482 | m.add(py, "__doc__", "RevLog - Rust implementations")?; |
|
488 | 483 | |
|
489 | 484 | m.add_class::<MixedIndex>(py)?; |
|
490 | 485 | |
|
491 | 486 | let sys = PyModule::import(py, "sys")?; |
|
492 | 487 | let sys_modules: PyDict = sys.get(py, "modules")?.extract(py)?; |
|
493 | 488 | sys_modules.set_item(py, dotted_name, &m)?; |
|
494 | 489 | |
|
495 | 490 | Ok(m) |
|
496 | 491 | } |
General Comments 0
You need to be logged in to leave comments.
Login now