##// END OF EJS Templates
rust-nodemap: accounting for dead blocks...
Georges Racinet -
r44873:6329ce04 default
parent child Browse files
Show More
@@ -1,1056 +1,1087 b''
1 // Copyright 2018-2020 Georges Racinet <georges.racinet@octobus.net>
1 // Copyright 2018-2020 Georges Racinet <georges.racinet@octobus.net>
2 // and Mercurial contributors
2 // and Mercurial contributors
3 //
3 //
4 // This software may be used and distributed according to the terms of the
4 // This software may be used and distributed according to the terms of the
5 // GNU General Public License version 2 or any later version.
5 // GNU General Public License version 2 or any later version.
6 //! Indexing facilities for fast retrieval of `Revision` from `Node`
6 //! Indexing facilities for fast retrieval of `Revision` from `Node`
7 //!
7 //!
8 //! This provides a variation on the 16-ary radix tree that is
8 //! This provides a variation on the 16-ary radix tree that is
9 //! provided as "nodetree" in revlog.c, ready for append-only persistence
9 //! provided as "nodetree" in revlog.c, ready for append-only persistence
10 //! on disk.
10 //! on disk.
11 //!
11 //!
12 //! Following existing implicit conventions, the "nodemap" terminology
12 //! Following existing implicit conventions, the "nodemap" terminology
13 //! is used in a more abstract context.
13 //! is used in a more abstract context.
14
14
15 use super::{
15 use super::{
16 node::NULL_NODE, Node, NodeError, NodePrefix, NodePrefixRef, Revision,
16 node::NULL_NODE, Node, NodeError, NodePrefix, NodePrefixRef, Revision,
17 RevlogIndex, NULL_REVISION,
17 RevlogIndex, NULL_REVISION,
18 };
18 };
19
19
20 use std::cmp::max;
20 use std::cmp::max;
21 use std::fmt;
21 use std::fmt;
22 use std::mem;
22 use std::mem;
23 use std::ops::Deref;
23 use std::ops::Deref;
24 use std::ops::Index;
24 use std::ops::Index;
25 use std::slice;
25 use std::slice;
26
26
27 #[derive(Debug, PartialEq)]
27 #[derive(Debug, PartialEq)]
28 pub enum NodeMapError {
28 pub enum NodeMapError {
29 MultipleResults,
29 MultipleResults,
30 InvalidNodePrefix(NodeError),
30 InvalidNodePrefix(NodeError),
31 /// A `Revision` stored in the nodemap could not be found in the index
31 /// A `Revision` stored in the nodemap could not be found in the index
32 RevisionNotInIndex(Revision),
32 RevisionNotInIndex(Revision),
33 }
33 }
34
34
35 impl From<NodeError> for NodeMapError {
35 impl From<NodeError> for NodeMapError {
36 fn from(err: NodeError) -> Self {
36 fn from(err: NodeError) -> Self {
37 NodeMapError::InvalidNodePrefix(err)
37 NodeMapError::InvalidNodePrefix(err)
38 }
38 }
39 }
39 }
40
40
41 /// Mapping system from Mercurial nodes to revision numbers.
41 /// Mapping system from Mercurial nodes to revision numbers.
42 ///
42 ///
43 /// ## `RevlogIndex` and `NodeMap`
43 /// ## `RevlogIndex` and `NodeMap`
44 ///
44 ///
45 /// One way to think about their relationship is that
45 /// One way to think about their relationship is that
46 /// the `NodeMap` is a prefix-oriented reverse index of the `Node` information
46 /// the `NodeMap` is a prefix-oriented reverse index of the `Node` information
47 /// carried by a [`RevlogIndex`].
47 /// carried by a [`RevlogIndex`].
48 ///
48 ///
49 /// Many of the methods in this trait take a `RevlogIndex` argument
49 /// Many of the methods in this trait take a `RevlogIndex` argument
50 /// which is used for validation of their results. This index must naturally
50 /// which is used for validation of their results. This index must naturally
51 /// be the one the `NodeMap` is about, and it must be consistent.
51 /// be the one the `NodeMap` is about, and it must be consistent.
52 ///
52 ///
53 /// Notably, the `NodeMap` must not store
53 /// Notably, the `NodeMap` must not store
54 /// information about more `Revision` values than there are in the index.
54 /// information about more `Revision` values than there are in the index.
55 /// In these methods, an encountered `Revision` is not in the index, a
55 /// In these methods, an encountered `Revision` is not in the index, a
56 /// [`RevisionNotInIndex`] error is returned.
56 /// [`RevisionNotInIndex`] error is returned.
57 ///
57 ///
58 /// In insert operations, the rule is thus that the `NodeMap` must always
58 /// In insert operations, the rule is thus that the `NodeMap` must always
59 /// be updated after the `RevlogIndex`
59 /// be updated after the `RevlogIndex`
60 /// be updated first, and the `NodeMap` second.
60 /// be updated first, and the `NodeMap` second.
61 ///
61 ///
62 /// [`RevisionNotInIndex`]: enum.NodeMapError.html#variant.RevisionNotInIndex
62 /// [`RevisionNotInIndex`]: enum.NodeMapError.html#variant.RevisionNotInIndex
63 /// [`RevlogIndex`]: ../trait.RevlogIndex.html
63 /// [`RevlogIndex`]: ../trait.RevlogIndex.html
64 pub trait NodeMap {
64 pub trait NodeMap {
65 /// Find the unique `Revision` having the given `Node`
65 /// Find the unique `Revision` having the given `Node`
66 ///
66 ///
67 /// If no Revision matches the given `Node`, `Ok(None)` is returned.
67 /// If no Revision matches the given `Node`, `Ok(None)` is returned.
68 fn find_node(
68 fn find_node(
69 &self,
69 &self,
70 index: &impl RevlogIndex,
70 index: &impl RevlogIndex,
71 node: &Node,
71 node: &Node,
72 ) -> Result<Option<Revision>, NodeMapError> {
72 ) -> Result<Option<Revision>, NodeMapError> {
73 self.find_bin(index, node.into())
73 self.find_bin(index, node.into())
74 }
74 }
75
75
76 /// Find the unique Revision whose `Node` starts with a given binary prefix
76 /// Find the unique Revision whose `Node` starts with a given binary prefix
77 ///
77 ///
78 /// If no Revision matches the given prefix, `Ok(None)` is returned.
78 /// If no Revision matches the given prefix, `Ok(None)` is returned.
79 ///
79 ///
80 /// If several Revisions match the given prefix, a [`MultipleResults`]
80 /// If several Revisions match the given prefix, a [`MultipleResults`]
81 /// error is returned.
81 /// error is returned.
82 fn find_bin<'a>(
82 fn find_bin<'a>(
83 &self,
83 &self,
84 idx: &impl RevlogIndex,
84 idx: &impl RevlogIndex,
85 prefix: NodePrefixRef<'a>,
85 prefix: NodePrefixRef<'a>,
86 ) -> Result<Option<Revision>, NodeMapError>;
86 ) -> Result<Option<Revision>, NodeMapError>;
87
87
88 /// Find the unique Revision whose `Node` hexadecimal string representation
88 /// Find the unique Revision whose `Node` hexadecimal string representation
89 /// starts with a given prefix
89 /// starts with a given prefix
90 ///
90 ///
91 /// If no Revision matches the given prefix, `Ok(None)` is returned.
91 /// If no Revision matches the given prefix, `Ok(None)` is returned.
92 ///
92 ///
93 /// If several Revisions match the given prefix, a [`MultipleResults`]
93 /// If several Revisions match the given prefix, a [`MultipleResults`]
94 /// error is returned.
94 /// error is returned.
95 fn find_hex(
95 fn find_hex(
96 &self,
96 &self,
97 idx: &impl RevlogIndex,
97 idx: &impl RevlogIndex,
98 prefix: &str,
98 prefix: &str,
99 ) -> Result<Option<Revision>, NodeMapError> {
99 ) -> Result<Option<Revision>, NodeMapError> {
100 self.find_bin(idx, NodePrefix::from_hex(prefix)?.borrow())
100 self.find_bin(idx, NodePrefix::from_hex(prefix)?.borrow())
101 }
101 }
102
102
103 /// Give the size of the shortest node prefix that determines
103 /// Give the size of the shortest node prefix that determines
104 /// the revision uniquely.
104 /// the revision uniquely.
105 ///
105 ///
106 /// From a binary node prefix, if it is matched in the node map, this
106 /// From a binary node prefix, if it is matched in the node map, this
107 /// returns the number of hexadecimal digits that would had sufficed
107 /// returns the number of hexadecimal digits that would had sufficed
108 /// to find the revision uniquely.
108 /// to find the revision uniquely.
109 ///
109 ///
110 /// Returns `None` if no `Revision` could be found for the prefix.
110 /// Returns `None` if no `Revision` could be found for the prefix.
111 ///
111 ///
112 /// If several Revisions match the given prefix, a [`MultipleResults`]
112 /// If several Revisions match the given prefix, a [`MultipleResults`]
113 /// error is returned.
113 /// error is returned.
114 fn unique_prefix_len_bin<'a>(
114 fn unique_prefix_len_bin<'a>(
115 &self,
115 &self,
116 idx: &impl RevlogIndex,
116 idx: &impl RevlogIndex,
117 node_prefix: NodePrefixRef<'a>,
117 node_prefix: NodePrefixRef<'a>,
118 ) -> Result<Option<usize>, NodeMapError>;
118 ) -> Result<Option<usize>, NodeMapError>;
119
119
120 /// Same as `unique_prefix_len_bin`, with the hexadecimal representation
120 /// Same as `unique_prefix_len_bin`, with the hexadecimal representation
121 /// of the prefix as input.
121 /// of the prefix as input.
122 fn unique_prefix_len_hex(
122 fn unique_prefix_len_hex(
123 &self,
123 &self,
124 idx: &impl RevlogIndex,
124 idx: &impl RevlogIndex,
125 prefix: &str,
125 prefix: &str,
126 ) -> Result<Option<usize>, NodeMapError> {
126 ) -> Result<Option<usize>, NodeMapError> {
127 self.unique_prefix_len_bin(idx, NodePrefix::from_hex(prefix)?.borrow())
127 self.unique_prefix_len_bin(idx, NodePrefix::from_hex(prefix)?.borrow())
128 }
128 }
129
129
130 /// Same as `unique_prefix_len_bin`, with a full `Node` as input
130 /// Same as `unique_prefix_len_bin`, with a full `Node` as input
131 fn unique_prefix_len_node(
131 fn unique_prefix_len_node(
132 &self,
132 &self,
133 idx: &impl RevlogIndex,
133 idx: &impl RevlogIndex,
134 node: &Node,
134 node: &Node,
135 ) -> Result<Option<usize>, NodeMapError> {
135 ) -> Result<Option<usize>, NodeMapError> {
136 self.unique_prefix_len_bin(idx, node.into())
136 self.unique_prefix_len_bin(idx, node.into())
137 }
137 }
138 }
138 }
139
139
140 pub trait MutableNodeMap: NodeMap {
140 pub trait MutableNodeMap: NodeMap {
141 fn insert<I: RevlogIndex>(
141 fn insert<I: RevlogIndex>(
142 &mut self,
142 &mut self,
143 index: &I,
143 index: &I,
144 node: &Node,
144 node: &Node,
145 rev: Revision,
145 rev: Revision,
146 ) -> Result<(), NodeMapError>;
146 ) -> Result<(), NodeMapError>;
147 }
147 }
148
148
149 /// Low level NodeTree [`Blocks`] elements
149 /// Low level NodeTree [`Blocks`] elements
150 ///
150 ///
151 /// These are exactly as for instance on persistent storage.
151 /// These are exactly as for instance on persistent storage.
152 type RawElement = i32;
152 type RawElement = i32;
153
153
154 /// High level representation of values in NodeTree
154 /// High level representation of values in NodeTree
155 /// [`Blocks`](struct.Block.html)
155 /// [`Blocks`](struct.Block.html)
156 ///
156 ///
157 /// This is the high level representation that most algorithms should
157 /// This is the high level representation that most algorithms should
158 /// use.
158 /// use.
159 #[derive(Clone, Debug, Eq, PartialEq)]
159 #[derive(Clone, Debug, Eq, PartialEq)]
160 enum Element {
160 enum Element {
161 Rev(Revision),
161 Rev(Revision),
162 Block(usize),
162 Block(usize),
163 None,
163 None,
164 }
164 }
165
165
166 impl From<RawElement> for Element {
166 impl From<RawElement> for Element {
167 /// Conversion from low level representation, after endianness conversion.
167 /// Conversion from low level representation, after endianness conversion.
168 ///
168 ///
169 /// See [`Block`](struct.Block.html) for explanation about the encoding.
169 /// See [`Block`](struct.Block.html) for explanation about the encoding.
170 fn from(raw: RawElement) -> Element {
170 fn from(raw: RawElement) -> Element {
171 if raw >= 0 {
171 if raw >= 0 {
172 Element::Block(raw as usize)
172 Element::Block(raw as usize)
173 } else if raw == -1 {
173 } else if raw == -1 {
174 Element::None
174 Element::None
175 } else {
175 } else {
176 Element::Rev(-raw - 2)
176 Element::Rev(-raw - 2)
177 }
177 }
178 }
178 }
179 }
179 }
180
180
181 impl From<Element> for RawElement {
181 impl From<Element> for RawElement {
182 fn from(element: Element) -> RawElement {
182 fn from(element: Element) -> RawElement {
183 match element {
183 match element {
184 Element::None => 0,
184 Element::None => 0,
185 Element::Block(i) => i as RawElement,
185 Element::Block(i) => i as RawElement,
186 Element::Rev(rev) => -rev - 2,
186 Element::Rev(rev) => -rev - 2,
187 }
187 }
188 }
188 }
189 }
189 }
190
190
191 /// A logical block of the `NodeTree`, packed with a fixed size.
191 /// A logical block of the `NodeTree`, packed with a fixed size.
192 ///
192 ///
193 /// These are always used in container types implementing `Index<Block>`,
193 /// These are always used in container types implementing `Index<Block>`,
194 /// such as `&Block`
194 /// such as `&Block`
195 ///
195 ///
196 /// As an array of integers, its ith element encodes that the
196 /// As an array of integers, its ith element encodes that the
197 /// ith potential edge from the block, representing the ith hexadecimal digit
197 /// ith potential edge from the block, representing the ith hexadecimal digit
198 /// (nybble) `i` is either:
198 /// (nybble) `i` is either:
199 ///
199 ///
200 /// - absent (value -1)
200 /// - absent (value -1)
201 /// - another `Block` in the same indexable container (value β‰₯ 0)
201 /// - another `Block` in the same indexable container (value β‰₯ 0)
202 /// - a `Revision` leaf (value ≀ -2)
202 /// - a `Revision` leaf (value ≀ -2)
203 ///
203 ///
204 /// Endianness has to be fixed for consistency on shared storage across
204 /// Endianness has to be fixed for consistency on shared storage across
205 /// different architectures.
205 /// different architectures.
206 ///
206 ///
207 /// A key difference with the C `nodetree` is that we need to be
207 /// A key difference with the C `nodetree` is that we need to be
208 /// able to represent the [`Block`] at index 0, hence -1 is the empty marker
208 /// able to represent the [`Block`] at index 0, hence -1 is the empty marker
209 /// rather than 0 and the `Revision` range upper limit of -2 instead of -1.
209 /// rather than 0 and the `Revision` range upper limit of -2 instead of -1.
210 ///
210 ///
211 /// Another related difference is that `NULL_REVISION` (-1) is not
211 /// Another related difference is that `NULL_REVISION` (-1) is not
212 /// represented at all, because we want an immutable empty nodetree
212 /// represented at all, because we want an immutable empty nodetree
213 /// to be valid.
213 /// to be valid.
214
214
215 #[derive(Copy, Clone)]
215 #[derive(Copy, Clone)]
216 pub struct Block([u8; BLOCK_SIZE]);
216 pub struct Block([u8; BLOCK_SIZE]);
217
217
218 /// Not derivable for arrays of length >32 until const generics are stable
218 /// Not derivable for arrays of length >32 until const generics are stable
219 impl PartialEq for Block {
219 impl PartialEq for Block {
220 fn eq(&self, other: &Self) -> bool {
220 fn eq(&self, other: &Self) -> bool {
221 &self.0[..] == &other.0[..]
221 &self.0[..] == &other.0[..]
222 }
222 }
223 }
223 }
224
224
225 pub const BLOCK_SIZE: usize = 64;
225 pub const BLOCK_SIZE: usize = 64;
226
226
227 impl Block {
227 impl Block {
228 fn new() -> Self {
228 fn new() -> Self {
229 // -1 in 2's complement to create an absent node
229 // -1 in 2's complement to create an absent node
230 let byte: u8 = 255;
230 let byte: u8 = 255;
231 Block([byte; BLOCK_SIZE])
231 Block([byte; BLOCK_SIZE])
232 }
232 }
233
233
234 fn get(&self, nybble: u8) -> Element {
234 fn get(&self, nybble: u8) -> Element {
235 let index = nybble as usize * mem::size_of::<RawElement>();
235 let index = nybble as usize * mem::size_of::<RawElement>();
236 Element::from(RawElement::from_be_bytes([
236 Element::from(RawElement::from_be_bytes([
237 self.0[index],
237 self.0[index],
238 self.0[index + 1],
238 self.0[index + 1],
239 self.0[index + 2],
239 self.0[index + 2],
240 self.0[index + 3],
240 self.0[index + 3],
241 ]))
241 ]))
242 }
242 }
243
243
244 fn set(&mut self, nybble: u8, element: Element) {
244 fn set(&mut self, nybble: u8, element: Element) {
245 let values = RawElement::to_be_bytes(element.into());
245 let values = RawElement::to_be_bytes(element.into());
246 let index = nybble as usize * mem::size_of::<RawElement>();
246 let index = nybble as usize * mem::size_of::<RawElement>();
247 self.0[index] = values[0];
247 self.0[index] = values[0];
248 self.0[index + 1] = values[1];
248 self.0[index + 1] = values[1];
249 self.0[index + 2] = values[2];
249 self.0[index + 2] = values[2];
250 self.0[index + 3] = values[3];
250 self.0[index + 3] = values[3];
251 }
251 }
252 }
252 }
253
253
254 impl fmt::Debug for Block {
254 impl fmt::Debug for Block {
255 /// sparse representation for testing and debugging purposes
255 /// sparse representation for testing and debugging purposes
256 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
256 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
257 f.debug_map()
257 f.debug_map()
258 .entries((0..16).filter_map(|i| match self.get(i) {
258 .entries((0..16).filter_map(|i| match self.get(i) {
259 Element::None => None,
259 Element::None => None,
260 element => Some((i, element)),
260 element => Some((i, element)),
261 }))
261 }))
262 .finish()
262 .finish()
263 }
263 }
264 }
264 }
265
265
266 /// A mutable 16-radix tree with the root block logically at the end
266 /// A mutable 16-radix tree with the root block logically at the end
267 ///
267 ///
268 /// Because of the append only nature of our node trees, we need to
268 /// Because of the append only nature of our node trees, we need to
269 /// keep the original untouched and store new blocks separately.
269 /// keep the original untouched and store new blocks separately.
270 ///
270 ///
271 /// The mutable root `Block` is kept apart so that we don't have to rebump
271 /// The mutable root `Block` is kept apart so that we don't have to rebump
272 /// it on each insertion.
272 /// it on each insertion.
273 pub struct NodeTree {
273 pub struct NodeTree {
274 readonly: Box<dyn Deref<Target = [Block]> + Send>,
274 readonly: Box<dyn Deref<Target = [Block]> + Send>,
275 growable: Vec<Block>,
275 growable: Vec<Block>,
276 root: Block,
276 root: Block,
277 masked_inner_blocks: usize,
277 }
278 }
278
279
279 impl Index<usize> for NodeTree {
280 impl Index<usize> for NodeTree {
280 type Output = Block;
281 type Output = Block;
281
282
282 fn index(&self, i: usize) -> &Block {
283 fn index(&self, i: usize) -> &Block {
283 let ro_len = self.readonly.len();
284 let ro_len = self.readonly.len();
284 if i < ro_len {
285 if i < ro_len {
285 &self.readonly[i]
286 &self.readonly[i]
286 } else if i == ro_len + self.growable.len() {
287 } else if i == ro_len + self.growable.len() {
287 &self.root
288 &self.root
288 } else {
289 } else {
289 &self.growable[i - ro_len]
290 &self.growable[i - ro_len]
290 }
291 }
291 }
292 }
292 }
293 }
293
294
294 /// Return `None` unless the `Node` for `rev` has given prefix in `index`.
295 /// Return `None` unless the `Node` for `rev` has given prefix in `index`.
295 fn has_prefix_or_none(
296 fn has_prefix_or_none(
296 idx: &impl RevlogIndex,
297 idx: &impl RevlogIndex,
297 prefix: NodePrefixRef,
298 prefix: NodePrefixRef,
298 rev: Revision,
299 rev: Revision,
299 ) -> Result<Option<Revision>, NodeMapError> {
300 ) -> Result<Option<Revision>, NodeMapError> {
300 idx.node(rev)
301 idx.node(rev)
301 .ok_or_else(|| NodeMapError::RevisionNotInIndex(rev))
302 .ok_or_else(|| NodeMapError::RevisionNotInIndex(rev))
302 .map(|node| {
303 .map(|node| {
303 if prefix.is_prefix_of(node) {
304 if prefix.is_prefix_of(node) {
304 Some(rev)
305 Some(rev)
305 } else {
306 } else {
306 None
307 None
307 }
308 }
308 })
309 })
309 }
310 }
310
311
311 /// validate that the candidate's node starts indeed with given prefix,
312 /// validate that the candidate's node starts indeed with given prefix,
312 /// and treat ambiguities related to `NULL_REVISION`.
313 /// and treat ambiguities related to `NULL_REVISION`.
313 ///
314 ///
314 /// From the data in the NodeTree, one can only conclude that some
315 /// From the data in the NodeTree, one can only conclude that some
315 /// revision is the only one for a *subprefix* of the one being looked up.
316 /// revision is the only one for a *subprefix* of the one being looked up.
316 fn validate_candidate(
317 fn validate_candidate(
317 idx: &impl RevlogIndex,
318 idx: &impl RevlogIndex,
318 prefix: NodePrefixRef,
319 prefix: NodePrefixRef,
319 candidate: (Option<Revision>, usize),
320 candidate: (Option<Revision>, usize),
320 ) -> Result<(Option<Revision>, usize), NodeMapError> {
321 ) -> Result<(Option<Revision>, usize), NodeMapError> {
321 let (rev, steps) = candidate;
322 let (rev, steps) = candidate;
322 if let Some(nz_nybble) = prefix.first_different_nybble(&NULL_NODE) {
323 if let Some(nz_nybble) = prefix.first_different_nybble(&NULL_NODE) {
323 rev.map_or(Ok((None, steps)), |r| {
324 rev.map_or(Ok((None, steps)), |r| {
324 has_prefix_or_none(idx, prefix, r)
325 has_prefix_or_none(idx, prefix, r)
325 .map(|opt| (opt, max(steps, nz_nybble + 1)))
326 .map(|opt| (opt, max(steps, nz_nybble + 1)))
326 })
327 })
327 } else {
328 } else {
328 // the prefix is only made of zeros; NULL_REVISION always matches it
329 // the prefix is only made of zeros; NULL_REVISION always matches it
329 // and any other *valid* result is an ambiguity
330 // and any other *valid* result is an ambiguity
330 match rev {
331 match rev {
331 None => Ok((Some(NULL_REVISION), steps + 1)),
332 None => Ok((Some(NULL_REVISION), steps + 1)),
332 Some(r) => match has_prefix_or_none(idx, prefix, r)? {
333 Some(r) => match has_prefix_or_none(idx, prefix, r)? {
333 None => Ok((Some(NULL_REVISION), steps + 1)),
334 None => Ok((Some(NULL_REVISION), steps + 1)),
334 _ => Err(NodeMapError::MultipleResults),
335 _ => Err(NodeMapError::MultipleResults),
335 },
336 },
336 }
337 }
337 }
338 }
338 }
339 }
339
340
340 impl NodeTree {
341 impl NodeTree {
341 /// Initiate a NodeTree from an immutable slice-like of `Block`
342 /// Initiate a NodeTree from an immutable slice-like of `Block`
342 ///
343 ///
343 /// We keep `readonly` and clone its root block if it isn't empty.
344 /// We keep `readonly` and clone its root block if it isn't empty.
344 fn new(readonly: Box<dyn Deref<Target = [Block]> + Send>) -> Self {
345 fn new(readonly: Box<dyn Deref<Target = [Block]> + Send>) -> Self {
345 let root = readonly
346 let root = readonly
346 .last()
347 .last()
347 .map(|b| b.clone())
348 .map(|b| b.clone())
348 .unwrap_or_else(|| Block::new());
349 .unwrap_or_else(|| Block::new());
349 NodeTree {
350 NodeTree {
350 readonly: readonly,
351 readonly: readonly,
351 growable: Vec::new(),
352 growable: Vec::new(),
352 root: root,
353 root: root,
354 masked_inner_blocks: 0,
353 }
355 }
354 }
356 }
355
357
356 /// Create from an opaque bunch of bytes
358 /// Create from an opaque bunch of bytes
357 ///
359 ///
358 /// The created `NodeTreeBytes` from `buffer`,
360 /// The created `NodeTreeBytes` from `buffer`,
359 /// of which exactly `amount` bytes are used.
361 /// of which exactly `amount` bytes are used.
360 ///
362 ///
361 /// - `buffer` could be derived from `PyBuffer` and `Mmap` objects.
363 /// - `buffer` could be derived from `PyBuffer` and `Mmap` objects.
362 /// - `offset` allows for the final file format to include fixed data
364 /// - `offset` allows for the final file format to include fixed data
363 /// (generation number, behavioural flags)
365 /// (generation number, behavioural flags)
364 /// - `amount` is expressed in bytes, and is not automatically derived from
366 /// - `amount` is expressed in bytes, and is not automatically derived from
365 /// `bytes`, so that a caller that manages them atomically can perform
367 /// `bytes`, so that a caller that manages them atomically can perform
366 /// temporary disk serializations and still rollback easily if needed.
368 /// temporary disk serializations and still rollback easily if needed.
367 /// First use-case for this would be to support Mercurial shell hooks.
369 /// First use-case for this would be to support Mercurial shell hooks.
368 ///
370 ///
369 /// panics if `buffer` is smaller than `amount`
371 /// panics if `buffer` is smaller than `amount`
370 pub fn load_bytes(
372 pub fn load_bytes(
371 bytes: Box<dyn Deref<Target = [u8]> + Send>,
373 bytes: Box<dyn Deref<Target = [u8]> + Send>,
372 amount: usize,
374 amount: usize,
373 ) -> Self {
375 ) -> Self {
374 NodeTree::new(Box::new(NodeTreeBytes::new(bytes, amount)))
376 NodeTree::new(Box::new(NodeTreeBytes::new(bytes, amount)))
375 }
377 }
376
378
377 /// Retrieve added `Block` and the original immutable data
379 /// Retrieve added `Block` and the original immutable data
378 pub fn into_readonly_and_added(
380 pub fn into_readonly_and_added(
379 self,
381 self,
380 ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<Block>) {
382 ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<Block>) {
381 let mut vec = self.growable;
383 let mut vec = self.growable;
382 let readonly = self.readonly;
384 let readonly = self.readonly;
383 if readonly.last() != Some(&self.root) {
385 if readonly.last() != Some(&self.root) {
384 vec.push(self.root);
386 vec.push(self.root);
385 }
387 }
386 (readonly, vec)
388 (readonly, vec)
387 }
389 }
388
390
389 /// Retrieve added `Blocks` as bytes, ready to be written to persistent
391 /// Retrieve added `Blocks` as bytes, ready to be written to persistent
390 /// storage
392 /// storage
391 pub fn into_readonly_and_added_bytes(
393 pub fn into_readonly_and_added_bytes(
392 self,
394 self,
393 ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<u8>) {
395 ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<u8>) {
394 let (readonly, vec) = self.into_readonly_and_added();
396 let (readonly, vec) = self.into_readonly_and_added();
395 // Prevent running `v`'s destructor so we are in complete control
397 // Prevent running `v`'s destructor so we are in complete control
396 // of the allocation.
398 // of the allocation.
397 let vec = mem::ManuallyDrop::new(vec);
399 let vec = mem::ManuallyDrop::new(vec);
398
400
399 // Transmute the `Vec<Block>` to a `Vec<u8>`. Blocks are contiguous
401 // Transmute the `Vec<Block>` to a `Vec<u8>`. Blocks are contiguous
400 // bytes, so this is perfectly safe.
402 // bytes, so this is perfectly safe.
401 let bytes = unsafe {
403 let bytes = unsafe {
402 // Assert that `Block` hasn't been changed and has no padding
404 // Assert that `Block` hasn't been changed and has no padding
403 let _: [u8; 4 * BLOCK_SIZE] =
405 let _: [u8; 4 * BLOCK_SIZE] =
404 std::mem::transmute([Block::new(); 4]);
406 std::mem::transmute([Block::new(); 4]);
405
407
406 // /!\ Any use of `vec` after this is use-after-free.
408 // /!\ Any use of `vec` after this is use-after-free.
407 // TODO: use `into_raw_parts` once stabilized
409 // TODO: use `into_raw_parts` once stabilized
408 Vec::from_raw_parts(
410 Vec::from_raw_parts(
409 vec.as_ptr() as *mut u8,
411 vec.as_ptr() as *mut u8,
410 vec.len() * BLOCK_SIZE,
412 vec.len() * BLOCK_SIZE,
411 vec.capacity() * BLOCK_SIZE,
413 vec.capacity() * BLOCK_SIZE,
412 )
414 )
413 };
415 };
414 (readonly, bytes)
416 (readonly, bytes)
415 }
417 }
416
418
417 /// Total number of blocks
419 /// Total number of blocks
418 fn len(&self) -> usize {
420 fn len(&self) -> usize {
419 self.readonly.len() + self.growable.len() + 1
421 self.readonly.len() + self.growable.len() + 1
420 }
422 }
421
423
422 /// Implemented for completeness
424 /// Implemented for completeness
423 ///
425 ///
424 /// A `NodeTree` always has at least the mutable root block.
426 /// A `NodeTree` always has at least the mutable root block.
425 #[allow(dead_code)]
427 #[allow(dead_code)]
426 fn is_empty(&self) -> bool {
428 fn is_empty(&self) -> bool {
427 false
429 false
428 }
430 }
429
431
430 /// Main working method for `NodeTree` searches
432 /// Main working method for `NodeTree` searches
431 ///
433 ///
432 /// The first returned value is the result of analysing `NodeTree` data
434 /// The first returned value is the result of analysing `NodeTree` data
433 /// *alone*: whereas `None` guarantees that the given prefix is absent
435 /// *alone*: whereas `None` guarantees that the given prefix is absent
434 /// from the `NodeTree` data (but still could match `NULL_NODE`), with
436 /// from the `NodeTree` data (but still could match `NULL_NODE`), with
435 /// `Some(rev)`, it is to be understood that `rev` is the unique `Revision`
437 /// `Some(rev)`, it is to be understood that `rev` is the unique `Revision`
436 /// that could match the prefix. Actually, all that can be inferred from
438 /// that could match the prefix. Actually, all that can be inferred from
437 /// the `NodeTree` data is that `rev` is the revision with the longest
439 /// the `NodeTree` data is that `rev` is the revision with the longest
438 /// common node prefix with the given prefix.
440 /// common node prefix with the given prefix.
439 ///
441 ///
440 /// The second returned value is the size of the smallest subprefix
442 /// The second returned value is the size of the smallest subprefix
441 /// of `prefix` that would give the same result, i.e. not the
443 /// of `prefix` that would give the same result, i.e. not the
442 /// `MultipleResults` error variant (again, using only the data of the
444 /// `MultipleResults` error variant (again, using only the data of the
443 /// `NodeTree`).
445 /// `NodeTree`).
444 fn lookup(
446 fn lookup(
445 &self,
447 &self,
446 prefix: NodePrefixRef,
448 prefix: NodePrefixRef,
447 ) -> Result<(Option<Revision>, usize), NodeMapError> {
449 ) -> Result<(Option<Revision>, usize), NodeMapError> {
448 for (i, visit_item) in self.visit(prefix).enumerate() {
450 for (i, visit_item) in self.visit(prefix).enumerate() {
449 if let Some(opt) = visit_item.final_revision() {
451 if let Some(opt) = visit_item.final_revision() {
450 return Ok((opt, i + 1));
452 return Ok((opt, i + 1));
451 }
453 }
452 }
454 }
453 Err(NodeMapError::MultipleResults)
455 Err(NodeMapError::MultipleResults)
454 }
456 }
455
457
456 fn visit<'n, 'p>(
458 fn visit<'n, 'p>(
457 &'n self,
459 &'n self,
458 prefix: NodePrefixRef<'p>,
460 prefix: NodePrefixRef<'p>,
459 ) -> NodeTreeVisitor<'n, 'p> {
461 ) -> NodeTreeVisitor<'n, 'p> {
460 NodeTreeVisitor {
462 NodeTreeVisitor {
461 nt: self,
463 nt: self,
462 prefix: prefix,
464 prefix: prefix,
463 visit: self.len() - 1,
465 visit: self.len() - 1,
464 nybble_idx: 0,
466 nybble_idx: 0,
465 done: false,
467 done: false,
466 }
468 }
467 }
469 }
468 /// Return a mutable reference for `Block` at index `idx`.
470 /// Return a mutable reference for `Block` at index `idx`.
469 ///
471 ///
470 /// If `idx` lies in the immutable area, then the reference is to
472 /// If `idx` lies in the immutable area, then the reference is to
471 /// a newly appended copy.
473 /// a newly appended copy.
472 ///
474 ///
473 /// Returns (new_idx, glen, mut_ref) where
475 /// Returns (new_idx, glen, mut_ref) where
474 ///
476 ///
475 /// - `new_idx` is the index of the mutable `Block`
477 /// - `new_idx` is the index of the mutable `Block`
476 /// - `mut_ref` is a mutable reference to the mutable Block.
478 /// - `mut_ref` is a mutable reference to the mutable Block.
477 /// - `glen` is the new length of `self.growable`
479 /// - `glen` is the new length of `self.growable`
478 ///
480 ///
479 /// Note: the caller wouldn't be allowed to query `self.growable.len()`
481 /// Note: the caller wouldn't be allowed to query `self.growable.len()`
480 /// itself because of the mutable borrow taken with the returned `Block`
482 /// itself because of the mutable borrow taken with the returned `Block`
481 fn mutable_block(&mut self, idx: usize) -> (usize, &mut Block, usize) {
483 fn mutable_block(&mut self, idx: usize) -> (usize, &mut Block, usize) {
482 let ro_blocks = &self.readonly;
484 let ro_blocks = &self.readonly;
483 let ro_len = ro_blocks.len();
485 let ro_len = ro_blocks.len();
484 let glen = self.growable.len();
486 let glen = self.growable.len();
485 if idx < ro_len {
487 if idx < ro_len {
488 self.masked_inner_blocks += 1;
486 // TODO OPTIM I think this makes two copies
489 // TODO OPTIM I think this makes two copies
487 self.growable.push(ro_blocks[idx].clone());
490 self.growable.push(ro_blocks[idx].clone());
488 (glen + ro_len, &mut self.growable[glen], glen + 1)
491 (glen + ro_len, &mut self.growable[glen], glen + 1)
489 } else if glen + ro_len == idx {
492 } else if glen + ro_len == idx {
490 (idx, &mut self.root, glen)
493 (idx, &mut self.root, glen)
491 } else {
494 } else {
492 (idx, &mut self.growable[idx - ro_len], glen)
495 (idx, &mut self.growable[idx - ro_len], glen)
493 }
496 }
494 }
497 }
495
498
496 /// Main insertion method
499 /// Main insertion method
497 ///
500 ///
498 /// This will dive in the node tree to find the deepest `Block` for
501 /// This will dive in the node tree to find the deepest `Block` for
499 /// `node`, split it as much as needed and record `node` in there.
502 /// `node`, split it as much as needed and record `node` in there.
500 /// The method then backtracks, updating references in all the visited
503 /// The method then backtracks, updating references in all the visited
501 /// blocks from the root.
504 /// blocks from the root.
502 ///
505 ///
503 /// All the mutated `Block` are copied first to the growable part if
506 /// All the mutated `Block` are copied first to the growable part if
504 /// needed. That happens for those in the immutable part except the root.
507 /// needed. That happens for those in the immutable part except the root.
505 pub fn insert<I: RevlogIndex>(
508 pub fn insert<I: RevlogIndex>(
506 &mut self,
509 &mut self,
507 index: &I,
510 index: &I,
508 node: &Node,
511 node: &Node,
509 rev: Revision,
512 rev: Revision,
510 ) -> Result<(), NodeMapError> {
513 ) -> Result<(), NodeMapError> {
511 let ro_len = &self.readonly.len();
514 let ro_len = &self.readonly.len();
512
515
513 let mut visit_steps: Vec<_> = self.visit(node.into()).collect();
516 let mut visit_steps: Vec<_> = self.visit(node.into()).collect();
514 let read_nybbles = visit_steps.len();
517 let read_nybbles = visit_steps.len();
515 // visit_steps cannot be empty, since we always visit the root block
518 // visit_steps cannot be empty, since we always visit the root block
516 let deepest = visit_steps.pop().unwrap();
519 let deepest = visit_steps.pop().unwrap();
517
520
518 let (mut block_idx, mut block, mut glen) =
521 let (mut block_idx, mut block, mut glen) =
519 self.mutable_block(deepest.block_idx);
522 self.mutable_block(deepest.block_idx);
520
523
521 if let Element::Rev(old_rev) = deepest.element {
524 if let Element::Rev(old_rev) = deepest.element {
522 let old_node = index
525 let old_node = index
523 .node(old_rev)
526 .node(old_rev)
524 .ok_or_else(|| NodeMapError::RevisionNotInIndex(old_rev))?;
527 .ok_or_else(|| NodeMapError::RevisionNotInIndex(old_rev))?;
525 if old_node == node {
528 if old_node == node {
526 return Ok(()); // avoid creating lots of useless blocks
529 return Ok(()); // avoid creating lots of useless blocks
527 }
530 }
528
531
529 // Looping over the tail of nybbles in both nodes, creating
532 // Looping over the tail of nybbles in both nodes, creating
530 // new blocks until we find the difference
533 // new blocks until we find the difference
531 let mut new_block_idx = ro_len + glen;
534 let mut new_block_idx = ro_len + glen;
532 let mut nybble = deepest.nybble;
535 let mut nybble = deepest.nybble;
533 for nybble_pos in read_nybbles..node.nybbles_len() {
536 for nybble_pos in read_nybbles..node.nybbles_len() {
534 block.set(nybble, Element::Block(new_block_idx));
537 block.set(nybble, Element::Block(new_block_idx));
535
538
536 let new_nybble = node.get_nybble(nybble_pos);
539 let new_nybble = node.get_nybble(nybble_pos);
537 let old_nybble = old_node.get_nybble(nybble_pos);
540 let old_nybble = old_node.get_nybble(nybble_pos);
538
541
539 if old_nybble == new_nybble {
542 if old_nybble == new_nybble {
540 self.growable.push(Block::new());
543 self.growable.push(Block::new());
541 block = &mut self.growable[glen];
544 block = &mut self.growable[glen];
542 glen += 1;
545 glen += 1;
543 new_block_idx += 1;
546 new_block_idx += 1;
544 nybble = new_nybble;
547 nybble = new_nybble;
545 } else {
548 } else {
546 let mut new_block = Block::new();
549 let mut new_block = Block::new();
547 new_block.set(old_nybble, Element::Rev(old_rev));
550 new_block.set(old_nybble, Element::Rev(old_rev));
548 new_block.set(new_nybble, Element::Rev(rev));
551 new_block.set(new_nybble, Element::Rev(rev));
549 self.growable.push(new_block);
552 self.growable.push(new_block);
550 break;
553 break;
551 }
554 }
552 }
555 }
553 } else {
556 } else {
554 // Free slot in the deepest block: no splitting has to be done
557 // Free slot in the deepest block: no splitting has to be done
555 block.set(deepest.nybble, Element::Rev(rev));
558 block.set(deepest.nybble, Element::Rev(rev));
556 }
559 }
557
560
558 // Backtrack over visit steps to update references
561 // Backtrack over visit steps to update references
559 while let Some(visited) = visit_steps.pop() {
562 while let Some(visited) = visit_steps.pop() {
560 let to_write = Element::Block(block_idx);
563 let to_write = Element::Block(block_idx);
561 if visit_steps.is_empty() {
564 if visit_steps.is_empty() {
562 self.root.set(visited.nybble, to_write);
565 self.root.set(visited.nybble, to_write);
563 break;
566 break;
564 }
567 }
565 let (new_idx, block, _) = self.mutable_block(visited.block_idx);
568 let (new_idx, block, _) = self.mutable_block(visited.block_idx);
566 if block.get(visited.nybble) == to_write {
569 if block.get(visited.nybble) == to_write {
567 break;
570 break;
568 }
571 }
569 block.set(visited.nybble, to_write);
572 block.set(visited.nybble, to_write);
570 block_idx = new_idx;
573 block_idx = new_idx;
571 }
574 }
572 Ok(())
575 Ok(())
573 }
576 }
577
578 /// Return the number of blocks in the readonly part that are currently
579 /// masked in the mutable part.
580 ///
581 /// The `NodeTree` structure has no efficient way to know how many blocks
582 /// are already unreachable in the readonly part.
583 pub fn masked_readonly_blocks(&self) -> usize {
584 if let Some(readonly_root) = self.readonly.last() {
585 if readonly_root == &self.root {
586 return 0;
587 }
588 } else {
589 return 0;
590 }
591 self.masked_inner_blocks + 1
592 }
574 }
593 }
575
594
576 pub struct NodeTreeBytes {
595 pub struct NodeTreeBytes {
577 buffer: Box<dyn Deref<Target = [u8]> + Send>,
596 buffer: Box<dyn Deref<Target = [u8]> + Send>,
578 len_in_blocks: usize,
597 len_in_blocks: usize,
579 }
598 }
580
599
581 impl NodeTreeBytes {
600 impl NodeTreeBytes {
582 fn new(
601 fn new(
583 buffer: Box<dyn Deref<Target = [u8]> + Send>,
602 buffer: Box<dyn Deref<Target = [u8]> + Send>,
584 amount: usize,
603 amount: usize,
585 ) -> Self {
604 ) -> Self {
586 assert!(buffer.len() >= amount);
605 assert!(buffer.len() >= amount);
587 let len_in_blocks = amount / BLOCK_SIZE;
606 let len_in_blocks = amount / BLOCK_SIZE;
588 NodeTreeBytes {
607 NodeTreeBytes {
589 buffer,
608 buffer,
590 len_in_blocks,
609 len_in_blocks,
591 }
610 }
592 }
611 }
593 }
612 }
594
613
595 impl Deref for NodeTreeBytes {
614 impl Deref for NodeTreeBytes {
596 type Target = [Block];
615 type Target = [Block];
597
616
598 fn deref(&self) -> &[Block] {
617 fn deref(&self) -> &[Block] {
599 unsafe {
618 unsafe {
600 slice::from_raw_parts(
619 slice::from_raw_parts(
601 (&self.buffer).as_ptr() as *const Block,
620 (&self.buffer).as_ptr() as *const Block,
602 self.len_in_blocks,
621 self.len_in_blocks,
603 )
622 )
604 }
623 }
605 }
624 }
606 }
625 }
607
626
608 struct NodeTreeVisitor<'n, 'p> {
627 struct NodeTreeVisitor<'n, 'p> {
609 nt: &'n NodeTree,
628 nt: &'n NodeTree,
610 prefix: NodePrefixRef<'p>,
629 prefix: NodePrefixRef<'p>,
611 visit: usize,
630 visit: usize,
612 nybble_idx: usize,
631 nybble_idx: usize,
613 done: bool,
632 done: bool,
614 }
633 }
615
634
616 #[derive(Debug, PartialEq, Clone)]
635 #[derive(Debug, PartialEq, Clone)]
617 struct NodeTreeVisitItem {
636 struct NodeTreeVisitItem {
618 block_idx: usize,
637 block_idx: usize,
619 nybble: u8,
638 nybble: u8,
620 element: Element,
639 element: Element,
621 }
640 }
622
641
623 impl<'n, 'p> Iterator for NodeTreeVisitor<'n, 'p> {
642 impl<'n, 'p> Iterator for NodeTreeVisitor<'n, 'p> {
624 type Item = NodeTreeVisitItem;
643 type Item = NodeTreeVisitItem;
625
644
626 fn next(&mut self) -> Option<Self::Item> {
645 fn next(&mut self) -> Option<Self::Item> {
627 if self.done || self.nybble_idx >= self.prefix.len() {
646 if self.done || self.nybble_idx >= self.prefix.len() {
628 return None;
647 return None;
629 }
648 }
630
649
631 let nybble = self.prefix.get_nybble(self.nybble_idx);
650 let nybble = self.prefix.get_nybble(self.nybble_idx);
632 self.nybble_idx += 1;
651 self.nybble_idx += 1;
633
652
634 let visit = self.visit;
653 let visit = self.visit;
635 let element = self.nt[visit].get(nybble);
654 let element = self.nt[visit].get(nybble);
636 if let Element::Block(idx) = element {
655 if let Element::Block(idx) = element {
637 self.visit = idx;
656 self.visit = idx;
638 } else {
657 } else {
639 self.done = true;
658 self.done = true;
640 }
659 }
641
660
642 Some(NodeTreeVisitItem {
661 Some(NodeTreeVisitItem {
643 block_idx: visit,
662 block_idx: visit,
644 nybble: nybble,
663 nybble: nybble,
645 element: element,
664 element: element,
646 })
665 })
647 }
666 }
648 }
667 }
649
668
650 impl NodeTreeVisitItem {
669 impl NodeTreeVisitItem {
651 // Return `Some(opt)` if this item is final, with `opt` being the
670 // Return `Some(opt)` if this item is final, with `opt` being the
652 // `Revision` that it may represent.
671 // `Revision` that it may represent.
653 //
672 //
654 // If the item is not terminal, return `None`
673 // If the item is not terminal, return `None`
655 fn final_revision(&self) -> Option<Option<Revision>> {
674 fn final_revision(&self) -> Option<Option<Revision>> {
656 match self.element {
675 match self.element {
657 Element::Block(_) => None,
676 Element::Block(_) => None,
658 Element::Rev(r) => Some(Some(r)),
677 Element::Rev(r) => Some(Some(r)),
659 Element::None => Some(None),
678 Element::None => Some(None),
660 }
679 }
661 }
680 }
662 }
681 }
663
682
664 impl From<Vec<Block>> for NodeTree {
683 impl From<Vec<Block>> for NodeTree {
665 fn from(vec: Vec<Block>) -> Self {
684 fn from(vec: Vec<Block>) -> Self {
666 Self::new(Box::new(vec))
685 Self::new(Box::new(vec))
667 }
686 }
668 }
687 }
669
688
670 impl fmt::Debug for NodeTree {
689 impl fmt::Debug for NodeTree {
671 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
690 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
672 let readonly: &[Block] = &*self.readonly;
691 let readonly: &[Block] = &*self.readonly;
673 write!(
692 write!(
674 f,
693 f,
675 "readonly: {:?}, growable: {:?}, root: {:?}",
694 "readonly: {:?}, growable: {:?}, root: {:?}",
676 readonly, self.growable, self.root
695 readonly, self.growable, self.root
677 )
696 )
678 }
697 }
679 }
698 }
680
699
681 impl Default for NodeTree {
700 impl Default for NodeTree {
682 /// Create a fully mutable empty NodeTree
701 /// Create a fully mutable empty NodeTree
683 fn default() -> Self {
702 fn default() -> Self {
684 NodeTree::new(Box::new(Vec::new()))
703 NodeTree::new(Box::new(Vec::new()))
685 }
704 }
686 }
705 }
687
706
688 impl NodeMap for NodeTree {
707 impl NodeMap for NodeTree {
689 fn find_bin<'a>(
708 fn find_bin<'a>(
690 &self,
709 &self,
691 idx: &impl RevlogIndex,
710 idx: &impl RevlogIndex,
692 prefix: NodePrefixRef<'a>,
711 prefix: NodePrefixRef<'a>,
693 ) -> Result<Option<Revision>, NodeMapError> {
712 ) -> Result<Option<Revision>, NodeMapError> {
694 validate_candidate(idx, prefix.clone(), self.lookup(prefix)?)
713 validate_candidate(idx, prefix.clone(), self.lookup(prefix)?)
695 .map(|(opt, _shortest)| opt)
714 .map(|(opt, _shortest)| opt)
696 }
715 }
697
716
698 fn unique_prefix_len_bin<'a>(
717 fn unique_prefix_len_bin<'a>(
699 &self,
718 &self,
700 idx: &impl RevlogIndex,
719 idx: &impl RevlogIndex,
701 prefix: NodePrefixRef<'a>,
720 prefix: NodePrefixRef<'a>,
702 ) -> Result<Option<usize>, NodeMapError> {
721 ) -> Result<Option<usize>, NodeMapError> {
703 validate_candidate(idx, prefix.clone(), self.lookup(prefix)?)
722 validate_candidate(idx, prefix.clone(), self.lookup(prefix)?)
704 .map(|(opt, shortest)| opt.map(|_rev| shortest))
723 .map(|(opt, shortest)| opt.map(|_rev| shortest))
705 }
724 }
706 }
725 }
707
726
708 #[cfg(test)]
727 #[cfg(test)]
709 mod tests {
728 mod tests {
710 use super::NodeMapError::*;
729 use super::NodeMapError::*;
711 use super::*;
730 use super::*;
712 use crate::revlog::node::{hex_pad_right, Node};
731 use crate::revlog::node::{hex_pad_right, Node};
713 use std::collections::HashMap;
732 use std::collections::HashMap;
714
733
715 /// Creates a `Block` using a syntax close to the `Debug` output
734 /// Creates a `Block` using a syntax close to the `Debug` output
716 macro_rules! block {
735 macro_rules! block {
717 {$($nybble:tt : $variant:ident($val:tt)),*} => (
736 {$($nybble:tt : $variant:ident($val:tt)),*} => (
718 {
737 {
719 let mut block = Block::new();
738 let mut block = Block::new();
720 $(block.set($nybble, Element::$variant($val)));*;
739 $(block.set($nybble, Element::$variant($val)));*;
721 block
740 block
722 }
741 }
723 )
742 )
724 }
743 }
725
744
726 #[test]
745 #[test]
727 fn test_block_debug() {
746 fn test_block_debug() {
728 let mut block = Block::new();
747 let mut block = Block::new();
729 block.set(1, Element::Rev(3));
748 block.set(1, Element::Rev(3));
730 block.set(10, Element::Block(0));
749 block.set(10, Element::Block(0));
731 assert_eq!(format!("{:?}", block), "{1: Rev(3), 10: Block(0)}");
750 assert_eq!(format!("{:?}", block), "{1: Rev(3), 10: Block(0)}");
732 }
751 }
733
752
734 #[test]
753 #[test]
735 fn test_block_macro() {
754 fn test_block_macro() {
736 let block = block! {5: Block(2)};
755 let block = block! {5: Block(2)};
737 assert_eq!(format!("{:?}", block), "{5: Block(2)}");
756 assert_eq!(format!("{:?}", block), "{5: Block(2)}");
738
757
739 let block = block! {13: Rev(15), 5: Block(2)};
758 let block = block! {13: Rev(15), 5: Block(2)};
740 assert_eq!(format!("{:?}", block), "{5: Block(2), 13: Rev(15)}");
759 assert_eq!(format!("{:?}", block), "{5: Block(2), 13: Rev(15)}");
741 }
760 }
742
761
743 #[test]
762 #[test]
744 fn test_raw_block() {
763 fn test_raw_block() {
745 let mut raw = [255u8; 64];
764 let mut raw = [255u8; 64];
746
765
747 let mut counter = 0;
766 let mut counter = 0;
748 for val in [0, 15, -2, -1, -3].iter() {
767 for val in [0, 15, -2, -1, -3].iter() {
749 for byte in RawElement::to_be_bytes(*val).iter() {
768 for byte in RawElement::to_be_bytes(*val).iter() {
750 raw[counter] = *byte;
769 raw[counter] = *byte;
751 counter += 1;
770 counter += 1;
752 }
771 }
753 }
772 }
754 let block = Block(raw);
773 let block = Block(raw);
755 assert_eq!(block.get(0), Element::Block(0));
774 assert_eq!(block.get(0), Element::Block(0));
756 assert_eq!(block.get(1), Element::Block(15));
775 assert_eq!(block.get(1), Element::Block(15));
757 assert_eq!(block.get(3), Element::None);
776 assert_eq!(block.get(3), Element::None);
758 assert_eq!(block.get(2), Element::Rev(0));
777 assert_eq!(block.get(2), Element::Rev(0));
759 assert_eq!(block.get(4), Element::Rev(1));
778 assert_eq!(block.get(4), Element::Rev(1));
760 }
779 }
761
780
762 type TestIndex = HashMap<Revision, Node>;
781 type TestIndex = HashMap<Revision, Node>;
763
782
764 impl RevlogIndex for TestIndex {
783 impl RevlogIndex for TestIndex {
765 fn node(&self, rev: Revision) -> Option<&Node> {
784 fn node(&self, rev: Revision) -> Option<&Node> {
766 self.get(&rev)
785 self.get(&rev)
767 }
786 }
768
787
769 fn len(&self) -> usize {
788 fn len(&self) -> usize {
770 self.len()
789 self.len()
771 }
790 }
772 }
791 }
773
792
774 /// Pad hexadecimal Node prefix with zeros on the right
793 /// Pad hexadecimal Node prefix with zeros on the right
775 ///
794 ///
776 /// This avoids having to repeatedly write very long hexadecimal
795 /// This avoids having to repeatedly write very long hexadecimal
777 /// strings for test data, and brings actual hash size independency.
796 /// strings for test data, and brings actual hash size independency.
778 #[cfg(test)]
797 #[cfg(test)]
779 fn pad_node(hex: &str) -> Node {
798 fn pad_node(hex: &str) -> Node {
780 Node::from_hex(&hex_pad_right(hex)).unwrap()
799 Node::from_hex(&hex_pad_right(hex)).unwrap()
781 }
800 }
782
801
783 /// Pad hexadecimal Node prefix with zeros on the right, then insert
802 /// Pad hexadecimal Node prefix with zeros on the right, then insert
784 fn pad_insert(idx: &mut TestIndex, rev: Revision, hex: &str) {
803 fn pad_insert(idx: &mut TestIndex, rev: Revision, hex: &str) {
785 idx.insert(rev, pad_node(hex));
804 idx.insert(rev, pad_node(hex));
786 }
805 }
787
806
788 fn sample_nodetree() -> NodeTree {
807 fn sample_nodetree() -> NodeTree {
789 NodeTree::from(vec![
808 NodeTree::from(vec![
790 block![0: Rev(9)],
809 block![0: Rev(9)],
791 block![0: Rev(0), 1: Rev(9)],
810 block![0: Rev(0), 1: Rev(9)],
792 block![0: Block(1), 1:Rev(1)],
811 block![0: Block(1), 1:Rev(1)],
793 ])
812 ])
794 }
813 }
795
814
796 #[test]
815 #[test]
797 fn test_nt_debug() {
816 fn test_nt_debug() {
798 let nt = sample_nodetree();
817 let nt = sample_nodetree();
799 assert_eq!(
818 assert_eq!(
800 format!("{:?}", nt),
819 format!("{:?}", nt),
801 "readonly: \
820 "readonly: \
802 [{0: Rev(9)}, {0: Rev(0), 1: Rev(9)}, {0: Block(1), 1: Rev(1)}], \
821 [{0: Rev(9)}, {0: Rev(0), 1: Rev(9)}, {0: Block(1), 1: Rev(1)}], \
803 growable: [], \
822 growable: [], \
804 root: {0: Block(1), 1: Rev(1)}",
823 root: {0: Block(1), 1: Rev(1)}",
805 );
824 );
806 }
825 }
807
826
808 #[test]
827 #[test]
809 fn test_immutable_find_simplest() -> Result<(), NodeMapError> {
828 fn test_immutable_find_simplest() -> Result<(), NodeMapError> {
810 let mut idx: TestIndex = HashMap::new();
829 let mut idx: TestIndex = HashMap::new();
811 pad_insert(&mut idx, 1, "1234deadcafe");
830 pad_insert(&mut idx, 1, "1234deadcafe");
812
831
813 let nt = NodeTree::from(vec![block! {1: Rev(1)}]);
832 let nt = NodeTree::from(vec![block! {1: Rev(1)}]);
814 assert_eq!(nt.find_hex(&idx, "1")?, Some(1));
833 assert_eq!(nt.find_hex(&idx, "1")?, Some(1));
815 assert_eq!(nt.find_hex(&idx, "12")?, Some(1));
834 assert_eq!(nt.find_hex(&idx, "12")?, Some(1));
816 assert_eq!(nt.find_hex(&idx, "1234de")?, Some(1));
835 assert_eq!(nt.find_hex(&idx, "1234de")?, Some(1));
817 assert_eq!(nt.find_hex(&idx, "1a")?, None);
836 assert_eq!(nt.find_hex(&idx, "1a")?, None);
818 assert_eq!(nt.find_hex(&idx, "ab")?, None);
837 assert_eq!(nt.find_hex(&idx, "ab")?, None);
819
838
820 // and with full binary Nodes
839 // and with full binary Nodes
821 assert_eq!(nt.find_node(&idx, idx.get(&1).unwrap())?, Some(1));
840 assert_eq!(nt.find_node(&idx, idx.get(&1).unwrap())?, Some(1));
822 let unknown = Node::from_hex(&hex_pad_right("3d")).unwrap();
841 let unknown = Node::from_hex(&hex_pad_right("3d")).unwrap();
823 assert_eq!(nt.find_node(&idx, &unknown)?, None);
842 assert_eq!(nt.find_node(&idx, &unknown)?, None);
824 Ok(())
843 Ok(())
825 }
844 }
826
845
827 #[test]
846 #[test]
828 fn test_immutable_find_one_jump() {
847 fn test_immutable_find_one_jump() {
829 let mut idx = TestIndex::new();
848 let mut idx = TestIndex::new();
830 pad_insert(&mut idx, 9, "012");
849 pad_insert(&mut idx, 9, "012");
831 pad_insert(&mut idx, 0, "00a");
850 pad_insert(&mut idx, 0, "00a");
832
851
833 let nt = sample_nodetree();
852 let nt = sample_nodetree();
834
853
835 assert_eq!(nt.find_hex(&idx, "0"), Err(MultipleResults));
854 assert_eq!(nt.find_hex(&idx, "0"), Err(MultipleResults));
836 assert_eq!(nt.find_hex(&idx, "01"), Ok(Some(9)));
855 assert_eq!(nt.find_hex(&idx, "01"), Ok(Some(9)));
837 assert_eq!(nt.find_hex(&idx, "00"), Err(MultipleResults));
856 assert_eq!(nt.find_hex(&idx, "00"), Err(MultipleResults));
838 assert_eq!(nt.find_hex(&idx, "00a"), Ok(Some(0)));
857 assert_eq!(nt.find_hex(&idx, "00a"), Ok(Some(0)));
839 assert_eq!(nt.unique_prefix_len_hex(&idx, "00a"), Ok(Some(3)));
858 assert_eq!(nt.unique_prefix_len_hex(&idx, "00a"), Ok(Some(3)));
840 assert_eq!(nt.find_hex(&idx, "000"), Ok(Some(NULL_REVISION)));
859 assert_eq!(nt.find_hex(&idx, "000"), Ok(Some(NULL_REVISION)));
841 }
860 }
842
861
843 #[test]
862 #[test]
844 fn test_mutated_find() -> Result<(), NodeMapError> {
863 fn test_mutated_find() -> Result<(), NodeMapError> {
845 let mut idx = TestIndex::new();
864 let mut idx = TestIndex::new();
846 pad_insert(&mut idx, 9, "012");
865 pad_insert(&mut idx, 9, "012");
847 pad_insert(&mut idx, 0, "00a");
866 pad_insert(&mut idx, 0, "00a");
848 pad_insert(&mut idx, 2, "cafe");
867 pad_insert(&mut idx, 2, "cafe");
849 pad_insert(&mut idx, 3, "15");
868 pad_insert(&mut idx, 3, "15");
850 pad_insert(&mut idx, 1, "10");
869 pad_insert(&mut idx, 1, "10");
851
870
852 let nt = NodeTree {
871 let nt = NodeTree {
853 readonly: sample_nodetree().readonly,
872 readonly: sample_nodetree().readonly,
854 growable: vec![block![0: Rev(1), 5: Rev(3)]],
873 growable: vec![block![0: Rev(1), 5: Rev(3)]],
855 root: block![0: Block(1), 1:Block(3), 12: Rev(2)],
874 root: block![0: Block(1), 1:Block(3), 12: Rev(2)],
875 masked_inner_blocks: 1,
856 };
876 };
857 assert_eq!(nt.find_hex(&idx, "10")?, Some(1));
877 assert_eq!(nt.find_hex(&idx, "10")?, Some(1));
858 assert_eq!(nt.find_hex(&idx, "c")?, Some(2));
878 assert_eq!(nt.find_hex(&idx, "c")?, Some(2));
859 assert_eq!(nt.unique_prefix_len_hex(&idx, "c")?, Some(1));
879 assert_eq!(nt.unique_prefix_len_hex(&idx, "c")?, Some(1));
860 assert_eq!(nt.find_hex(&idx, "00"), Err(MultipleResults));
880 assert_eq!(nt.find_hex(&idx, "00"), Err(MultipleResults));
861 assert_eq!(nt.find_hex(&idx, "000")?, Some(NULL_REVISION));
881 assert_eq!(nt.find_hex(&idx, "000")?, Some(NULL_REVISION));
862 assert_eq!(nt.unique_prefix_len_hex(&idx, "000")?, Some(3));
882 assert_eq!(nt.unique_prefix_len_hex(&idx, "000")?, Some(3));
863 assert_eq!(nt.find_hex(&idx, "01")?, Some(9));
883 assert_eq!(nt.find_hex(&idx, "01")?, Some(9));
884 assert_eq!(nt.masked_readonly_blocks(), 2);
864 Ok(())
885 Ok(())
865 }
886 }
866
887
867 struct TestNtIndex {
888 struct TestNtIndex {
868 index: TestIndex,
889 index: TestIndex,
869 nt: NodeTree,
890 nt: NodeTree,
870 }
891 }
871
892
872 impl TestNtIndex {
893 impl TestNtIndex {
873 fn new() -> Self {
894 fn new() -> Self {
874 TestNtIndex {
895 TestNtIndex {
875 index: HashMap::new(),
896 index: HashMap::new(),
876 nt: NodeTree::default(),
897 nt: NodeTree::default(),
877 }
898 }
878 }
899 }
879
900
880 fn insert(
901 fn insert(
881 &mut self,
902 &mut self,
882 rev: Revision,
903 rev: Revision,
883 hex: &str,
904 hex: &str,
884 ) -> Result<(), NodeMapError> {
905 ) -> Result<(), NodeMapError> {
885 let node = pad_node(hex);
906 let node = pad_node(hex);
886 self.index.insert(rev, node.clone());
907 self.index.insert(rev, node.clone());
887 self.nt.insert(&self.index, &node, rev)?;
908 self.nt.insert(&self.index, &node, rev)?;
888 Ok(())
909 Ok(())
889 }
910 }
890
911
891 fn find_hex(
912 fn find_hex(
892 &self,
913 &self,
893 prefix: &str,
914 prefix: &str,
894 ) -> Result<Option<Revision>, NodeMapError> {
915 ) -> Result<Option<Revision>, NodeMapError> {
895 self.nt.find_hex(&self.index, prefix)
916 self.nt.find_hex(&self.index, prefix)
896 }
917 }
897
918
898 fn unique_prefix_len_hex(
919 fn unique_prefix_len_hex(
899 &self,
920 &self,
900 prefix: &str,
921 prefix: &str,
901 ) -> Result<Option<usize>, NodeMapError> {
922 ) -> Result<Option<usize>, NodeMapError> {
902 self.nt.unique_prefix_len_hex(&self.index, prefix)
923 self.nt.unique_prefix_len_hex(&self.index, prefix)
903 }
924 }
904
925
905 /// Drain `added` and restart a new one
926 /// Drain `added` and restart a new one
906 fn commit(self) -> Self {
927 fn commit(self) -> Self {
907 let mut as_vec: Vec<Block> =
928 let mut as_vec: Vec<Block> =
908 self.nt.readonly.iter().map(|block| block.clone()).collect();
929 self.nt.readonly.iter().map(|block| block.clone()).collect();
909 as_vec.extend(self.nt.growable);
930 as_vec.extend(self.nt.growable);
910 as_vec.push(self.nt.root);
931 as_vec.push(self.nt.root);
911
932
912 Self {
933 Self {
913 index: self.index,
934 index: self.index,
914 nt: NodeTree::from(as_vec).into(),
935 nt: NodeTree::from(as_vec).into(),
915 }
936 }
916 }
937 }
917 }
938 }
918
939
919 #[test]
940 #[test]
920 fn test_insert_full_mutable() -> Result<(), NodeMapError> {
941 fn test_insert_full_mutable() -> Result<(), NodeMapError> {
921 let mut idx = TestNtIndex::new();
942 let mut idx = TestNtIndex::new();
922 idx.insert(0, "1234")?;
943 idx.insert(0, "1234")?;
923 assert_eq!(idx.find_hex("1")?, Some(0));
944 assert_eq!(idx.find_hex("1")?, Some(0));
924 assert_eq!(idx.find_hex("12")?, Some(0));
945 assert_eq!(idx.find_hex("12")?, Some(0));
925
946
926 // let's trigger a simple split
947 // let's trigger a simple split
927 idx.insert(1, "1a34")?;
948 idx.insert(1, "1a34")?;
928 assert_eq!(idx.nt.growable.len(), 1);
949 assert_eq!(idx.nt.growable.len(), 1);
929 assert_eq!(idx.find_hex("12")?, Some(0));
950 assert_eq!(idx.find_hex("12")?, Some(0));
930 assert_eq!(idx.find_hex("1a")?, Some(1));
951 assert_eq!(idx.find_hex("1a")?, Some(1));
931
952
932 // reinserting is a no_op
953 // reinserting is a no_op
933 idx.insert(1, "1a34")?;
954 idx.insert(1, "1a34")?;
934 assert_eq!(idx.nt.growable.len(), 1);
955 assert_eq!(idx.nt.growable.len(), 1);
935 assert_eq!(idx.find_hex("12")?, Some(0));
956 assert_eq!(idx.find_hex("12")?, Some(0));
936 assert_eq!(idx.find_hex("1a")?, Some(1));
957 assert_eq!(idx.find_hex("1a")?, Some(1));
937
958
938 idx.insert(2, "1a01")?;
959 idx.insert(2, "1a01")?;
939 assert_eq!(idx.nt.growable.len(), 2);
960 assert_eq!(idx.nt.growable.len(), 2);
940 assert_eq!(idx.find_hex("1a"), Err(NodeMapError::MultipleResults));
961 assert_eq!(idx.find_hex("1a"), Err(NodeMapError::MultipleResults));
941 assert_eq!(idx.find_hex("12")?, Some(0));
962 assert_eq!(idx.find_hex("12")?, Some(0));
942 assert_eq!(idx.find_hex("1a3")?, Some(1));
963 assert_eq!(idx.find_hex("1a3")?, Some(1));
943 assert_eq!(idx.find_hex("1a0")?, Some(2));
964 assert_eq!(idx.find_hex("1a0")?, Some(2));
944 assert_eq!(idx.find_hex("1a12")?, None);
965 assert_eq!(idx.find_hex("1a12")?, None);
945
966
946 // now let's make it split and create more than one additional block
967 // now let's make it split and create more than one additional block
947 idx.insert(3, "1a345")?;
968 idx.insert(3, "1a345")?;
948 assert_eq!(idx.nt.growable.len(), 4);
969 assert_eq!(idx.nt.growable.len(), 4);
949 assert_eq!(idx.find_hex("1a340")?, Some(1));
970 assert_eq!(idx.find_hex("1a340")?, Some(1));
950 assert_eq!(idx.find_hex("1a345")?, Some(3));
971 assert_eq!(idx.find_hex("1a345")?, Some(3));
951 assert_eq!(idx.find_hex("1a341")?, None);
972 assert_eq!(idx.find_hex("1a341")?, None);
952
973
974 // there's no readonly block to mask
975 assert_eq!(idx.nt.masked_readonly_blocks(), 0);
953 Ok(())
976 Ok(())
954 }
977 }
955
978
956 #[test]
979 #[test]
957 fn test_unique_prefix_len_zero_prefix() {
980 fn test_unique_prefix_len_zero_prefix() {
958 let mut idx = TestNtIndex::new();
981 let mut idx = TestNtIndex::new();
959 idx.insert(0, "00000abcd").unwrap();
982 idx.insert(0, "00000abcd").unwrap();
960
983
961 assert_eq!(idx.find_hex("000"), Err(NodeMapError::MultipleResults));
984 assert_eq!(idx.find_hex("000"), Err(NodeMapError::MultipleResults));
962 // in the nodetree proper, this will be found at the first nybble
985 // in the nodetree proper, this will be found at the first nybble
963 // yet the correct answer for unique_prefix_len is not 1, nor 1+1,
986 // yet the correct answer for unique_prefix_len is not 1, nor 1+1,
964 // but the first difference with `NULL_NODE`
987 // but the first difference with `NULL_NODE`
965 assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
988 assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
966 assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
989 assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
967
990
968 // same with odd result
991 // same with odd result
969 idx.insert(1, "00123").unwrap();
992 idx.insert(1, "00123").unwrap();
970 assert_eq!(idx.unique_prefix_len_hex("001"), Ok(Some(3)));
993 assert_eq!(idx.unique_prefix_len_hex("001"), Ok(Some(3)));
971 assert_eq!(idx.unique_prefix_len_hex("0012"), Ok(Some(3)));
994 assert_eq!(idx.unique_prefix_len_hex("0012"), Ok(Some(3)));
972
995
973 // these are unchanged of course
996 // these are unchanged of course
974 assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
997 assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
975 assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
998 assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
976 }
999 }
977
1000
978 #[test]
1001 #[test]
979 fn test_insert_extreme_splitting() -> Result<(), NodeMapError> {
1002 fn test_insert_extreme_splitting() -> Result<(), NodeMapError> {
980 // check that the splitting loop is long enough
1003 // check that the splitting loop is long enough
981 let mut nt_idx = TestNtIndex::new();
1004 let mut nt_idx = TestNtIndex::new();
982 let nt = &mut nt_idx.nt;
1005 let nt = &mut nt_idx.nt;
983 let idx = &mut nt_idx.index;
1006 let idx = &mut nt_idx.index;
984
1007
985 let node0_hex = hex_pad_right("444444");
1008 let node0_hex = hex_pad_right("444444");
986 let mut node1_hex = hex_pad_right("444444").clone();
1009 let mut node1_hex = hex_pad_right("444444").clone();
987 node1_hex.pop();
1010 node1_hex.pop();
988 node1_hex.push('5');
1011 node1_hex.push('5');
989 let node0 = Node::from_hex(&node0_hex).unwrap();
1012 let node0 = Node::from_hex(&node0_hex).unwrap();
990 let node1 = Node::from_hex(&node1_hex).unwrap();
1013 let node1 = Node::from_hex(&node1_hex).unwrap();
991
1014
992 idx.insert(0, node0.clone());
1015 idx.insert(0, node0.clone());
993 nt.insert(idx, &node0, 0)?;
1016 nt.insert(idx, &node0, 0)?;
994 idx.insert(1, node1.clone());
1017 idx.insert(1, node1.clone());
995 nt.insert(idx, &node1, 1)?;
1018 nt.insert(idx, &node1, 1)?;
996
1019
997 assert_eq!(nt.find_bin(idx, (&node0).into())?, Some(0));
1020 assert_eq!(nt.find_bin(idx, (&node0).into())?, Some(0));
998 assert_eq!(nt.find_bin(idx, (&node1).into())?, Some(1));
1021 assert_eq!(nt.find_bin(idx, (&node1).into())?, Some(1));
999 Ok(())
1022 Ok(())
1000 }
1023 }
1001
1024
1002 #[test]
1025 #[test]
1003 fn test_insert_partly_immutable() -> Result<(), NodeMapError> {
1026 fn test_insert_partly_immutable() -> Result<(), NodeMapError> {
1004 let mut idx = TestNtIndex::new();
1027 let mut idx = TestNtIndex::new();
1005 idx.insert(0, "1234")?;
1028 idx.insert(0, "1234")?;
1006 idx.insert(1, "1235")?;
1029 idx.insert(1, "1235")?;
1007 idx.insert(2, "131")?;
1030 idx.insert(2, "131")?;
1008 idx.insert(3, "cafe")?;
1031 idx.insert(3, "cafe")?;
1009 let mut idx = idx.commit();
1032 let mut idx = idx.commit();
1010 assert_eq!(idx.find_hex("1234")?, Some(0));
1033 assert_eq!(idx.find_hex("1234")?, Some(0));
1011 assert_eq!(idx.find_hex("1235")?, Some(1));
1034 assert_eq!(idx.find_hex("1235")?, Some(1));
1012 assert_eq!(idx.find_hex("131")?, Some(2));
1035 assert_eq!(idx.find_hex("131")?, Some(2));
1013 assert_eq!(idx.find_hex("cafe")?, Some(3));
1036 assert_eq!(idx.find_hex("cafe")?, Some(3));
1037 // we did not add anything since init from readonly
1038 assert_eq!(idx.nt.masked_readonly_blocks(), 0);
1014
1039
1015 idx.insert(4, "123A")?;
1040 idx.insert(4, "123A")?;
1016 assert_eq!(idx.find_hex("1234")?, Some(0));
1041 assert_eq!(idx.find_hex("1234")?, Some(0));
1017 assert_eq!(idx.find_hex("1235")?, Some(1));
1042 assert_eq!(idx.find_hex("1235")?, Some(1));
1018 assert_eq!(idx.find_hex("131")?, Some(2));
1043 assert_eq!(idx.find_hex("131")?, Some(2));
1019 assert_eq!(idx.find_hex("cafe")?, Some(3));
1044 assert_eq!(idx.find_hex("cafe")?, Some(3));
1020 assert_eq!(idx.find_hex("123A")?, Some(4));
1045 assert_eq!(idx.find_hex("123A")?, Some(4));
1046 // we masked blocks for all prefixes of "123", including the root
1047 assert_eq!(idx.nt.masked_readonly_blocks(), 4);
1021
1048
1049 eprintln!("{:?}", idx.nt);
1022 idx.insert(5, "c0")?;
1050 idx.insert(5, "c0")?;
1023 assert_eq!(idx.find_hex("cafe")?, Some(3));
1051 assert_eq!(idx.find_hex("cafe")?, Some(3));
1024 assert_eq!(idx.find_hex("c0")?, Some(5));
1052 assert_eq!(idx.find_hex("c0")?, Some(5));
1025 assert_eq!(idx.find_hex("c1")?, None);
1053 assert_eq!(idx.find_hex("c1")?, None);
1026 assert_eq!(idx.find_hex("1234")?, Some(0));
1054 assert_eq!(idx.find_hex("1234")?, Some(0));
1055 // inserting "c0" is just splitting the 'c' slot of the mutable root,
1056 // it doesn't mask anything
1057 assert_eq!(idx.nt.masked_readonly_blocks(), 4);
1027
1058
1028 Ok(())
1059 Ok(())
1029 }
1060 }
1030
1061
1031 #[test]
1062 #[test]
1032 fn test_into_added_empty() {
1063 fn test_into_added_empty() {
1033 assert!(sample_nodetree().into_readonly_and_added().1.is_empty());
1064 assert!(sample_nodetree().into_readonly_and_added().1.is_empty());
1034 assert!(sample_nodetree()
1065 assert!(sample_nodetree()
1035 .into_readonly_and_added_bytes()
1066 .into_readonly_and_added_bytes()
1036 .1
1067 .1
1037 .is_empty());
1068 .is_empty());
1038 }
1069 }
1039
1070
1040 #[test]
1071 #[test]
1041 fn test_into_added_bytes() -> Result<(), NodeMapError> {
1072 fn test_into_added_bytes() -> Result<(), NodeMapError> {
1042 let mut idx = TestNtIndex::new();
1073 let mut idx = TestNtIndex::new();
1043 idx.insert(0, "1234")?;
1074 idx.insert(0, "1234")?;
1044 let mut idx = idx.commit();
1075 let mut idx = idx.commit();
1045 idx.insert(4, "cafe")?;
1076 idx.insert(4, "cafe")?;
1046 let (_, bytes) = idx.nt.into_readonly_and_added_bytes();
1077 let (_, bytes) = idx.nt.into_readonly_and_added_bytes();
1047
1078
1048 // only the root block has been changed
1079 // only the root block has been changed
1049 assert_eq!(bytes.len(), BLOCK_SIZE);
1080 assert_eq!(bytes.len(), BLOCK_SIZE);
1050 // big endian for -2
1081 // big endian for -2
1051 assert_eq!(&bytes[4..2 * 4], [255, 255, 255, 254]);
1082 assert_eq!(&bytes[4..2 * 4], [255, 255, 255, 254]);
1052 // big endian for -6
1083 // big endian for -6
1053 assert_eq!(&bytes[12 * 4..13 * 4], [255, 255, 255, 250]);
1084 assert_eq!(&bytes[12 * 4..13 * 4], [255, 255, 255, 250]);
1054 Ok(())
1085 Ok(())
1055 }
1086 }
1056 }
1087 }
General Comments 0
You need to be logged in to leave comments. Login now