##// END OF EJS Templates
ancestors: simplify symmetric difference...
Matt Mackall -
r6427:6b704ef9 default
parent child Browse files
Show More
@@ -1,134 +1,130 b''
1 1 # ancestor.py - generic DAG ancestor algorithm for mercurial
2 2 #
3 3 # Copyright 2006 Matt Mackall <mpm@selenic.com>
4 4 #
5 5 # This software may be used and distributed according to the terms
6 6 # of the GNU General Public License, incorporated herein by reference.
7 7
8 8 import heapq
9 9
10 10 def ancestor(a, b, pfunc):
11 11 """
12 12 return the least common ancestor of nodes a and b or None if there
13 13 is no such ancestor.
14 14
15 15 pfunc must return a list of parent vertices
16 16 """
17 17
18 18 if a == b:
19 19 return a
20 20
21 21 # find depth from root of all ancestors
22 22 visit = [a, b]
23 23 depth = {}
24 24 while visit:
25 25 vertex = visit[-1]
26 26 pl = pfunc(vertex)
27 27 if not pl:
28 28 depth[vertex] = 0
29 29 visit.pop()
30 30 else:
31 31 for p in pl:
32 32 if p == a or p == b: # did we find a or b as a parent?
33 33 return p # we're done
34 34 if p not in depth:
35 35 visit.append(p)
36 36 if visit[-1] == vertex:
37 37 depth[vertex] = min([depth[p] for p in pl]) - 1
38 38 visit.pop()
39 39
40 40 # traverse ancestors in order of decreasing distance from root
41 41 def ancestors(vertex):
42 42 h = [(depth[vertex], vertex)]
43 43 seen = {}
44 44 while h:
45 45 d, n = heapq.heappop(h)
46 46 if n not in seen:
47 47 seen[n] = 1
48 48 yield (d, n)
49 49 for p in pfunc(n):
50 50 heapq.heappush(h, (depth[p], p))
51 51
52 52 def generations(vertex):
53 53 sg, s = None, {}
54 54 for g, v in ancestors(vertex):
55 55 if g != sg:
56 56 if sg:
57 57 yield sg, s
58 58 sg, s = g, {v:1}
59 59 else:
60 60 s[v] = 1
61 61 yield sg, s
62 62
63 63 x = generations(a)
64 64 y = generations(b)
65 65 gx = x.next()
66 66 gy = y.next()
67 67
68 68 # increment each ancestor list until it is closer to root than
69 69 # the other, or they match
70 70 try:
71 71 while 1:
72 72 if gx[0] == gy[0]:
73 73 for v in gx[1]:
74 74 if v in gy[1]:
75 75 return v
76 76 gy = y.next()
77 77 gx = x.next()
78 78 elif gx[0] > gy[0]:
79 79 gy = y.next()
80 80 else:
81 81 gx = x.next()
82 82 except StopIteration:
83 83 return None
84 84
85 85 def symmetricdifference(a, b, pfunc):
86 86 """symmetric difference of the sets of ancestors of a and b
87 87
88 88 I.e. revisions that are ancestors of a or b, but not both.
89 89 """
90 90 # basic idea:
91 91 # - mark a and b with different colors
92 92 # - walk the graph in topological order with the help of a heap;
93 93 # for each revision r:
94 94 # - if r has only one color, we want to return it
95 95 # - add colors[r] to its parents
96 96 #
97 97 # We keep track of the number of revisions in the heap that
98 98 # we may be interested in. We stop walking the graph as soon
99 99 # as this number reaches 0.
100 100 if a == b:
101 101 return [a]
102 102
103 103 WHITE = 1
104 104 BLACK = 2
105 105 ALLCOLORS = WHITE | BLACK
106 106 colors = {a: WHITE, b: BLACK}
107 107
108 108 visit = [-a, -b]
109 109 heapq.heapify(visit)
110 n_wanted = len(visit)
111 ret = []
110 interesting = len(visit)
112 111
113 while n_wanted:
112 while interesting:
114 113 r = -heapq.heappop(visit)
115 wanted = colors[r] != ALLCOLORS
116 n_wanted -= wanted
117 if wanted:
118 ret.append(r)
114 if colors[r] != ALLCOLORS:
115 interesting -= 1
119 116
120 117 for p in pfunc(r):
121 118 if p not in colors:
122 119 # first time we see p; add it to visit
123 n_wanted += wanted
124 120 colors[p] = colors[r]
121 if colors[p] != ALLCOLORS:
122 interesting += 1
125 123 heapq.heappush(visit, -p)
126 124 elif colors[p] != ALLCOLORS and colors[p] != colors[r]:
127 125 # at first we thought we wanted p, but now
128 126 # we know we don't really want it
129 n_wanted -= 1
130 127 colors[p] |= colors[r]
128 interesting -= 1
131 129
132 del colors[r]
133
134 return ret
130 return [r for r in colors if colors[r] != ALLCOLORS]
General Comments 0
You need to be logged in to leave comments. Login now