##// END OF EJS Templates
rust-cpython: replace dyn Iterator<..> of sequence with concrete type...
Yuya Nishihara -
r43157:706104dc default
parent child Browse files
Show More
@@ -1,127 +1,130 b''
1 1 // dirs_multiset.rs
2 2 //
3 3 // Copyright 2019 Raphaël Gomès <rgomes@octobus.net>
4 4 //
5 5 // This software may be used and distributed according to the terms of the
6 6 // GNU General Public License version 2 or any later version.
7 7
8 8 //! Bindings for the `hg::dirstate::dirs_multiset` file provided by the
9 9 //! `hg-core` package.
10 10
11 11 use std::cell::RefCell;
12 12 use std::convert::TryInto;
13 13
14 14 use cpython::{
15 15 exc, ObjectProtocol, PyBytes, PyClone, PyDict, PyErr, PyObject, PyResult,
16 16 Python,
17 17 };
18 18
19 19 use crate::dirstate::extract_dirstate;
20 20 use crate::ref_sharing::{PySharedRefCell, PySharedState};
21 use hg::{DirsMultiset, DirstateMapError, DirstateParseError, EntryState};
21 use hg::{
22 DirsMultiset, DirsMultisetIter, DirstateMapError, DirstateParseError,
23 EntryState,
24 };
22 25
23 26 py_class!(pub class Dirs |py| {
24 27 data inner: PySharedRefCell<DirsMultiset>;
25 28 data py_shared_state: PySharedState;
26 29
27 30 // `map` is either a `dict` or a flat iterator (usually a `set`, sometimes
28 31 // a `list`)
29 32 def __new__(
30 33 _cls,
31 34 map: PyObject,
32 35 skip: Option<PyObject> = None
33 36 ) -> PyResult<Self> {
34 37 let mut skip_state: Option<EntryState> = None;
35 38 if let Some(skip) = skip {
36 39 skip_state = Some(
37 40 skip.extract::<PyBytes>(py)?.data(py)[0]
38 41 .try_into()
39 42 .map_err(|e: DirstateParseError| {
40 43 PyErr::new::<exc::ValueError, _>(py, e.to_string())
41 44 })?,
42 45 );
43 46 }
44 47 let inner = if let Ok(map) = map.cast_as::<PyDict>(py) {
45 48 let dirstate = extract_dirstate(py, &map)?;
46 49 DirsMultiset::from_dirstate(&dirstate, skip_state)
47 50 } else {
48 51 let map: Result<Vec<Vec<u8>>, PyErr> = map
49 52 .iter(py)?
50 53 .map(|o| Ok(o?.extract::<PyBytes>(py)?.data(py).to_owned()))
51 54 .collect();
52 55 DirsMultiset::from_manifest(&map?)
53 56 };
54 57
55 58 Self::create_instance(
56 59 py,
57 60 PySharedRefCell::new(inner),
58 61 PySharedState::default()
59 62 )
60 63 }
61 64
62 65 def addpath(&self, path: PyObject) -> PyResult<PyObject> {
63 66 self.borrow_mut(py)?.add_path(
64 67 path.extract::<PyBytes>(py)?.data(py),
65 68 );
66 69 Ok(py.None())
67 70 }
68 71
69 72 def delpath(&self, path: PyObject) -> PyResult<PyObject> {
70 73 self.borrow_mut(py)?.delete_path(
71 74 path.extract::<PyBytes>(py)?.data(py),
72 75 )
73 76 .and(Ok(py.None()))
74 77 .or_else(|e| {
75 78 match e {
76 79 DirstateMapError::PathNotFound(_p) => {
77 80 Err(PyErr::new::<exc::ValueError, _>(
78 81 py,
79 82 "expected a value, found none".to_string(),
80 83 ))
81 84 }
82 85 DirstateMapError::EmptyPath => {
83 86 Ok(py.None())
84 87 }
85 88 }
86 89 })
87 90 }
88 91 def __iter__(&self) -> PyResult<DirsMultisetKeysIterator> {
89 92 let (leak_handle, leaked_ref) = unsafe { self.leak_immutable(py)? };
90 93 DirsMultisetKeysIterator::create_instance(
91 94 py,
92 95 RefCell::new(Some(leak_handle)),
93 RefCell::new(Box::new(leaked_ref.iter())),
96 RefCell::new(leaked_ref.iter()),
94 97 )
95 98 }
96 99
97 100 def __contains__(&self, item: PyObject) -> PyResult<bool> {
98 101 Ok(self
99 102 .inner(py)
100 103 .borrow()
101 104 .contains(item.extract::<PyBytes>(py)?.data(py).as_ref()))
102 105 }
103 106 });
104 107
105 108 py_shared_ref!(Dirs, DirsMultiset, inner, DirsMultisetLeakedRef,);
106 109
107 110 impl Dirs {
108 111 pub fn from_inner(py: Python, d: DirsMultiset) -> PyResult<Self> {
109 112 Self::create_instance(
110 113 py,
111 114 PySharedRefCell::new(d),
112 115 PySharedState::default(),
113 116 )
114 117 }
115 118
116 119 fn translate_key(py: Python, res: &Vec<u8>) -> PyResult<Option<PyBytes>> {
117 120 Ok(Some(PyBytes::new(py, res)))
118 121 }
119 122 }
120 123
121 py_shared_sequence_iterator!(
124 py_shared_iterator_impl!(
122 125 DirsMultisetKeysIterator,
123 126 DirsMultisetLeakedRef,
124 Vec<u8>,
127 DirsMultisetIter<'static>,
125 128 Dirs::translate_key,
126 129 Option<PyBytes>
127 130 );
@@ -1,439 +1,419 b''
1 1 // macros.rs
2 2 //
3 3 // Copyright 2019 Raphaël Gomès <rgomes@octobus.net>
4 4 //
5 5 // This software may be used and distributed according to the terms of the
6 6 // GNU General Public License version 2 or any later version.
7 7
8 8 //! Macros for use in the `hg-cpython` bridge library.
9 9
10 10 use crate::exceptions::AlreadyBorrowed;
11 11 use cpython::{PyResult, Python};
12 12 use std::cell::{Cell, Ref, RefCell, RefMut};
13 13
14 14 /// Manages the shared state between Python and Rust
15 15 #[derive(Default)]
16 16 pub struct PySharedState {
17 17 leak_count: Cell<usize>,
18 18 mutably_borrowed: Cell<bool>,
19 19 }
20 20
21 21 impl PySharedState {
22 22 pub fn borrow_mut<'a, T>(
23 23 &'a self,
24 24 py: Python<'a>,
25 25 pyrefmut: RefMut<'a, T>,
26 26 ) -> PyResult<PyRefMut<'a, T>> {
27 27 if self.mutably_borrowed.get() {
28 28 return Err(AlreadyBorrowed::new(
29 29 py,
30 30 "Cannot borrow mutably while there exists another \
31 31 mutable reference in a Python object",
32 32 ));
33 33 }
34 34 match self.leak_count.get() {
35 35 0 => {
36 36 self.mutably_borrowed.replace(true);
37 37 Ok(PyRefMut::new(py, pyrefmut, self))
38 38 }
39 39 // TODO
40 40 // For now, this works differently than Python references
41 41 // in the case of iterators.
42 42 // Python does not complain when the data an iterator
43 43 // points to is modified if the iterator is never used
44 44 // afterwards.
45 45 // Here, we are stricter than this by refusing to give a
46 46 // mutable reference if it is already borrowed.
47 47 // While the additional safety might be argued for, it
48 48 // breaks valid programming patterns in Python and we need
49 49 // to fix this issue down the line.
50 50 _ => Err(AlreadyBorrowed::new(
51 51 py,
52 52 "Cannot borrow mutably while there are \
53 53 immutable references in Python objects",
54 54 )),
55 55 }
56 56 }
57 57
58 58 /// Return a reference to the wrapped data with an artificial static
59 59 /// lifetime.
60 60 /// We need to be protected by the GIL for thread-safety.
61 61 ///
62 62 /// # Safety
63 63 ///
64 64 /// This is highly unsafe since the lifetime of the given data can be
65 65 /// extended. Do not call this function directly.
66 66 pub unsafe fn leak_immutable<T>(
67 67 &self,
68 68 py: Python,
69 69 data: &PySharedRefCell<T>,
70 70 ) -> PyResult<&'static T> {
71 71 if self.mutably_borrowed.get() {
72 72 return Err(AlreadyBorrowed::new(
73 73 py,
74 74 "Cannot borrow immutably while there is a \
75 75 mutable reference in Python objects",
76 76 ));
77 77 }
78 78 let ptr = data.as_ptr();
79 79 self.leak_count.replace(self.leak_count.get() + 1);
80 80 Ok(&*ptr)
81 81 }
82 82
83 83 /// # Safety
84 84 ///
85 85 /// It's unsafe to update the reference count without knowing the
86 86 /// reference is deleted. Do not call this function directly.
87 87 pub unsafe fn decrease_leak_count(&self, _py: Python, mutable: bool) {
88 88 self.leak_count
89 89 .replace(self.leak_count.get().saturating_sub(1));
90 90 if mutable {
91 91 self.mutably_borrowed.replace(false);
92 92 }
93 93 }
94 94 }
95 95
96 96 /// `RefCell` wrapper to be safely used in conjunction with `PySharedState`.
97 97 ///
98 98 /// Only immutable operation is allowed through this interface.
99 99 #[derive(Debug)]
100 100 pub struct PySharedRefCell<T> {
101 101 inner: RefCell<T>,
102 102 }
103 103
104 104 impl<T> PySharedRefCell<T> {
105 105 pub const fn new(value: T) -> PySharedRefCell<T> {
106 106 Self {
107 107 inner: RefCell::new(value),
108 108 }
109 109 }
110 110
111 111 pub fn borrow(&self) -> Ref<T> {
112 112 // py_shared_state isn't involved since
113 113 // - inner.borrow() would fail if self is mutably borrowed,
114 114 // - and inner.borrow_mut() would fail while self is borrowed.
115 115 self.inner.borrow()
116 116 }
117 117
118 118 pub fn as_ptr(&self) -> *mut T {
119 119 self.inner.as_ptr()
120 120 }
121 121
122 122 pub unsafe fn borrow_mut(&self) -> RefMut<T> {
123 123 // must be borrowed by self.py_shared_state(py).borrow_mut().
124 124 self.inner.borrow_mut()
125 125 }
126 126 }
127 127
128 128 /// Holds a mutable reference to data shared between Python and Rust.
129 129 pub struct PyRefMut<'a, T> {
130 130 inner: RefMut<'a, T>,
131 131 py_shared_state: &'a PySharedState,
132 132 }
133 133
134 134 impl<'a, T> PyRefMut<'a, T> {
135 135 // Must be constructed by PySharedState after checking its leak_count.
136 136 // Otherwise, drop() would incorrectly update the state.
137 137 fn new(
138 138 _py: Python<'a>,
139 139 inner: RefMut<'a, T>,
140 140 py_shared_state: &'a PySharedState,
141 141 ) -> Self {
142 142 Self {
143 143 inner,
144 144 py_shared_state,
145 145 }
146 146 }
147 147 }
148 148
149 149 impl<'a, T> std::ops::Deref for PyRefMut<'a, T> {
150 150 type Target = RefMut<'a, T>;
151 151
152 152 fn deref(&self) -> &Self::Target {
153 153 &self.inner
154 154 }
155 155 }
156 156 impl<'a, T> std::ops::DerefMut for PyRefMut<'a, T> {
157 157 fn deref_mut(&mut self) -> &mut Self::Target {
158 158 &mut self.inner
159 159 }
160 160 }
161 161
162 162 impl<'a, T> Drop for PyRefMut<'a, T> {
163 163 fn drop(&mut self) {
164 164 let gil = Python::acquire_gil();
165 165 let py = gil.python();
166 166 unsafe {
167 167 self.py_shared_state.decrease_leak_count(py, true);
168 168 }
169 169 }
170 170 }
171 171
172 172 /// Allows a `py_class!` generated struct to share references to one of its
173 173 /// data members with Python.
174 174 ///
175 175 /// # Warning
176 176 ///
177 177 /// The targeted `py_class!` needs to have the
178 178 /// `data py_shared_state: PySharedState;` data attribute to compile.
179 179 /// A better, more complicated macro is needed to automatically insert it,
180 180 /// but this one is not yet really battle tested (what happens when
181 181 /// multiple references are needed?). See the example below.
182 182 ///
183 183 /// TODO allow Python container types: for now, integration with the garbage
184 184 /// collector does not extend to Rust structs holding references to Python
185 185 /// objects. Should the need surface, `__traverse__` and `__clear__` will
186 186 /// need to be written as per the `rust-cpython` docs on GC integration.
187 187 ///
188 188 /// # Parameters
189 189 ///
190 190 /// * `$name` is the same identifier used in for `py_class!` macro call.
191 191 /// * `$inner_struct` is the identifier of the underlying Rust struct
192 192 /// * `$data_member` is the identifier of the data member of `$inner_struct`
193 193 /// that will be shared.
194 194 /// * `$leaked` is the identifier to give to the struct that will manage
195 195 /// references to `$name`, to be used for example in other macros like
196 196 /// `py_shared_mapping_iterator`.
197 197 ///
198 198 /// # Example
199 199 ///
200 200 /// ```
201 201 /// struct MyStruct {
202 202 /// inner: Vec<u32>;
203 203 /// }
204 204 ///
205 205 /// py_class!(pub class MyType |py| {
206 206 /// data inner: PySharedRefCell<MyStruct>;
207 207 /// data py_shared_state: PySharedState;
208 208 /// });
209 209 ///
210 210 /// py_shared_ref!(MyType, MyStruct, inner, MyTypeLeakedRef);
211 211 /// ```
212 212 macro_rules! py_shared_ref {
213 213 (
214 214 $name: ident,
215 215 $inner_struct: ident,
216 216 $data_member: ident,
217 217 $leaked: ident,
218 218 ) => {
219 219 impl $name {
220 220 fn borrow_mut<'a>(
221 221 &'a self,
222 222 py: Python<'a>,
223 223 ) -> PyResult<crate::ref_sharing::PyRefMut<'a, $inner_struct>>
224 224 {
225 225 // assert $data_member type
226 226 use crate::ref_sharing::PySharedRefCell;
227 227 let data: &PySharedRefCell<_> = self.$data_member(py);
228 228 self.py_shared_state(py)
229 229 .borrow_mut(py, unsafe { data.borrow_mut() })
230 230 }
231 231
232 232 /// Returns a leaked reference and its management object.
233 233 ///
234 234 /// # Safety
235 235 ///
236 236 /// It's up to you to make sure that the management object lives
237 237 /// longer than the leaked reference. Otherwise, you'll get a
238 238 /// dangling reference.
239 239 unsafe fn leak_immutable<'a>(
240 240 &'a self,
241 241 py: Python<'a>,
242 242 ) -> PyResult<($leaked, &'static $inner_struct)> {
243 243 // assert $data_member type
244 244 use crate::ref_sharing::PySharedRefCell;
245 245 let data: &PySharedRefCell<_> = self.$data_member(py);
246 246 let static_ref =
247 247 self.py_shared_state(py).leak_immutable(py, data)?;
248 248 let leak_handle = $leaked::new(py, self);
249 249 Ok((leak_handle, static_ref))
250 250 }
251 251 }
252 252
253 253 /// Manage immutable references to `$name` leaked into Python
254 254 /// iterators.
255 255 ///
256 256 /// In truth, this does not represent leaked references themselves;
257 257 /// it is instead useful alongside them to manage them.
258 258 pub struct $leaked {
259 259 inner: $name,
260 260 }
261 261
262 262 impl $leaked {
263 263 // Marked as unsafe so client code wouldn't construct $leaked
264 264 // struct by mistake. Its drop() is unsafe.
265 265 unsafe fn new(py: Python, inner: &$name) -> Self {
266 266 Self {
267 267 inner: inner.clone_ref(py),
268 268 }
269 269 }
270 270 }
271 271
272 272 impl Drop for $leaked {
273 273 fn drop(&mut self) {
274 274 let gil = Python::acquire_gil();
275 275 let py = gil.python();
276 276 let state = self.inner.py_shared_state(py);
277 277 unsafe {
278 278 state.decrease_leak_count(py, false);
279 279 }
280 280 }
281 281 }
282 282 };
283 283 }
284 284
285 285 /// Defines a `py_class!` that acts as a Python iterator over a Rust iterator.
286 286 macro_rules! py_shared_iterator_impl {
287 287 (
288 288 $name: ident,
289 289 $leaked: ident,
290 290 $iterator_type: ty,
291 291 $success_func: expr,
292 292 $success_type: ty
293 293 ) => {
294 294 py_class!(pub class $name |py| {
295 295 data inner: RefCell<Option<$leaked>>;
296 296 data it: RefCell<$iterator_type>;
297 297
298 298 def __next__(&self) -> PyResult<$success_type> {
299 299 let mut inner_opt = self.inner(py).borrow_mut();
300 300 if inner_opt.is_some() {
301 301 match self.it(py).borrow_mut().next() {
302 302 None => {
303 303 // replace Some(inner) by None, drop $leaked
304 304 inner_opt.take();
305 305 Ok(None)
306 306 }
307 307 Some(res) => {
308 308 $success_func(py, res)
309 309 }
310 310 }
311 311 } else {
312 312 Ok(None)
313 313 }
314 314 }
315 315
316 316 def __iter__(&self) -> PyResult<Self> {
317 317 Ok(self.clone_ref(py))
318 318 }
319 319 });
320 320
321 321 impl $name {
322 322 pub fn from_inner(
323 323 py: Python,
324 324 leaked: Option<$leaked>,
325 325 it: $iterator_type
326 326 ) -> PyResult<Self> {
327 327 Self::create_instance(
328 328 py,
329 329 RefCell::new(leaked),
330 330 RefCell::new(it)
331 331 )
332 332 }
333 333 }
334 334 };
335 335 }
336 336
337 337 /// Defines a `py_class!` that acts as a Python mapping iterator over a Rust
338 338 /// iterator.
339 339 ///
340 340 /// TODO: this is a bit awkward to use, and a better (more complicated)
341 341 /// procedural macro would simplify the interface a lot.
342 342 ///
343 343 /// # Parameters
344 344 ///
345 345 /// * `$name` is the identifier to give to the resulting Rust struct.
346 346 /// * `$leaked` corresponds to `$leaked` in the matching `py_shared_ref!` call.
347 347 /// * `$key_type` is the type of the key in the mapping
348 348 /// * `$value_type` is the type of the value in the mapping
349 349 /// * `$success_func` is a function for processing the Rust `(key, value)`
350 350 /// tuple on iteration success, turning it into something Python understands.
351 351 /// * `$success_func` is the return type of `$success_func`
352 352 ///
353 353 /// # Example
354 354 ///
355 355 /// ```
356 356 /// struct MyStruct {
357 357 /// inner: HashMap<Vec<u8>, Vec<u8>>;
358 358 /// }
359 359 ///
360 360 /// py_class!(pub class MyType |py| {
361 361 /// data inner: PySharedRefCell<MyStruct>;
362 362 /// data py_shared_state: PySharedState;
363 363 ///
364 364 /// def __iter__(&self) -> PyResult<MyTypeItemsIterator> {
365 365 /// let (leak_handle, leaked_ref) = unsafe { self.leak_immutable(py)? };
366 366 /// MyTypeItemsIterator::create_instance(
367 367 /// py,
368 368 /// RefCell::new(Some(leak_handle)),
369 369 /// RefCell::new(leaked_ref.iter()),
370 370 /// )
371 371 /// }
372 372 /// });
373 373 ///
374 374 /// impl MyType {
375 375 /// fn translate_key_value(
376 376 /// py: Python,
377 377 /// res: (&Vec<u8>, &Vec<u8>),
378 378 /// ) -> PyResult<Option<(PyBytes, PyBytes)>> {
379 379 /// let (f, entry) = res;
380 380 /// Ok(Some((
381 381 /// PyBytes::new(py, f),
382 382 /// PyBytes::new(py, entry),
383 383 /// )))
384 384 /// }
385 385 /// }
386 386 ///
387 387 /// py_shared_ref!(MyType, MyStruct, inner, MyTypeLeakedRef);
388 388 ///
389 389 /// py_shared_mapping_iterator!(
390 390 /// MyTypeItemsIterator,
391 391 /// MyTypeLeakedRef,
392 392 /// Vec<u8>,
393 393 /// Vec<u8>,
394 394 /// MyType::translate_key_value,
395 395 /// Option<(PyBytes, PyBytes)>
396 396 /// );
397 397 /// ```
398 398 #[allow(unused)] // Removed in a future patch
399 399 macro_rules! py_shared_mapping_iterator {
400 400 (
401 401 $name:ident,
402 402 $leaked:ident,
403 403 $key_type: ty,
404 404 $value_type: ty,
405 405 $success_func: path,
406 406 $success_type: ty
407 407 ) => {
408 408 py_shared_iterator_impl!(
409 409 $name,
410 410 $leaked,
411 411 Box<
412 412 dyn Iterator<Item = (&'static $key_type, &'static $value_type)>
413 413 + Send,
414 414 >,
415 415 $success_func,
416 416 $success_type
417 417 );
418 418 };
419 419 }
420
421 /// Works basically the same as `py_shared_mapping_iterator`, but with only a
422 /// key.
423 macro_rules! py_shared_sequence_iterator {
424 (
425 $name:ident,
426 $leaked:ident,
427 $key_type: ty,
428 $success_func: path,
429 $success_type: ty
430 ) => {
431 py_shared_iterator_impl!(
432 $name,
433 $leaked,
434 Box<dyn Iterator<Item = &'static $key_type> + Send>,
435 $success_func,
436 $success_type
437 );
438 };
439 }
General Comments 0
You need to be logged in to leave comments. Login now