Show More
@@ -1,767 +1,766 | |||
|
1 | 1 | // ancestors.rs |
|
2 | 2 | // |
|
3 | 3 | // Copyright 2018 Georges Racinet <gracinet@anybox.fr> |
|
4 | 4 | // |
|
5 | 5 | // This software may be used and distributed according to the terms of the |
|
6 | 6 | // GNU General Public License version 2 or any later version. |
|
7 | 7 | |
|
8 | 8 | //! Rust versions of generic DAG ancestors algorithms for Mercurial |
|
9 | 9 | |
|
10 | 10 | use super::{Graph, GraphError, Revision, NULL_REVISION}; |
|
11 | 11 | use std::cmp::max; |
|
12 | 12 | use std::collections::{BinaryHeap, HashSet}; |
|
13 | 13 | use crate::dagops; |
|
14 | 14 | |
|
15 | 15 | /// Iterator over the ancestors of a given list of revisions |
|
16 | 16 | /// This is a generic type, defined and implemented for any Graph, so that |
|
17 | 17 | /// it's easy to |
|
18 | 18 | /// |
|
19 | 19 | /// - unit test in pure Rust |
|
20 | 20 | /// - bind to main Mercurial code, potentially in several ways and have these |
|
21 | 21 | /// bindings evolve over time |
|
22 | 22 | pub struct AncestorsIterator<G: Graph> { |
|
23 | 23 | graph: G, |
|
24 | 24 | visit: BinaryHeap<Revision>, |
|
25 | 25 | seen: HashSet<Revision>, |
|
26 | 26 | stoprev: Revision, |
|
27 | 27 | } |
|
28 | 28 | |
|
29 | 29 | /// Lazy ancestors set, backed by AncestorsIterator |
|
30 | 30 | pub struct LazyAncestors<G: Graph + Clone> { |
|
31 | 31 | graph: G, |
|
32 | 32 | containsiter: AncestorsIterator<G>, |
|
33 | 33 | initrevs: Vec<Revision>, |
|
34 | 34 | stoprev: Revision, |
|
35 | 35 | inclusive: bool, |
|
36 | 36 | } |
|
37 | 37 | |
|
38 | 38 | pub struct MissingAncestors<G: Graph> { |
|
39 | 39 | graph: G, |
|
40 | 40 | bases: HashSet<Revision>, |
|
41 | 41 | } |
|
42 | 42 | |
|
43 | 43 | impl<G: Graph> AncestorsIterator<G> { |
|
44 | 44 | /// Constructor. |
|
45 | 45 | /// |
|
46 | 46 | /// if `inclusive` is true, then the init revisions are emitted in |
|
47 | 47 | /// particular, otherwise iteration starts from their parents. |
|
48 | 48 | pub fn new( |
|
49 | 49 | graph: G, |
|
50 | 50 | initrevs: impl IntoIterator<Item = Revision>, |
|
51 | 51 | stoprev: Revision, |
|
52 | 52 | inclusive: bool, |
|
53 | 53 | ) -> Result<Self, GraphError> { |
|
54 | 54 | let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev); |
|
55 | 55 | if inclusive { |
|
56 | 56 | let visit: BinaryHeap<Revision> = filtered_initrevs.collect(); |
|
57 | 57 | let seen = visit.iter().map(|&x| x).collect(); |
|
58 | 58 | return Ok(AncestorsIterator { |
|
59 | 59 | visit: visit, |
|
60 | 60 | seen: seen, |
|
61 | 61 | stoprev: stoprev, |
|
62 | 62 | graph: graph, |
|
63 | 63 | }); |
|
64 | 64 | } |
|
65 | 65 | let mut this = AncestorsIterator { |
|
66 | 66 | visit: BinaryHeap::new(), |
|
67 | 67 | seen: HashSet::new(), |
|
68 | 68 | stoprev: stoprev, |
|
69 | 69 | graph: graph, |
|
70 | 70 | }; |
|
71 | 71 | this.seen.insert(NULL_REVISION); |
|
72 | 72 | for rev in filtered_initrevs { |
|
73 | 73 | for parent in this.graph.parents(rev)?.iter().cloned() { |
|
74 | 74 | this.conditionally_push_rev(parent); |
|
75 | 75 | } |
|
76 | 76 | } |
|
77 | 77 | Ok(this) |
|
78 | 78 | } |
|
79 | 79 | |
|
80 | 80 | #[inline] |
|
81 | 81 | fn conditionally_push_rev(&mut self, rev: Revision) { |
|
82 | 82 | if self.stoprev <= rev && self.seen.insert(rev) { |
|
83 | 83 | self.visit.push(rev); |
|
84 | 84 | } |
|
85 | 85 | } |
|
86 | 86 | |
|
87 | 87 | /// Consumes partially the iterator to tell if the given target |
|
88 | 88 | /// revision |
|
89 | 89 | /// is in the ancestors it emits. |
|
90 | 90 | /// This is meant for iterators actually dedicated to that kind of |
|
91 | 91 | /// purpose |
|
92 | 92 | pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> { |
|
93 | 93 | if self.seen.contains(&target) && target != NULL_REVISION { |
|
94 | 94 | return Ok(true); |
|
95 | 95 | } |
|
96 | 96 | for item in self { |
|
97 | 97 | let rev = item?; |
|
98 | 98 | if rev == target { |
|
99 | 99 | return Ok(true); |
|
100 | 100 | } |
|
101 | 101 | if rev < target { |
|
102 | 102 | return Ok(false); |
|
103 | 103 | } |
|
104 | 104 | } |
|
105 | 105 | Ok(false) |
|
106 | 106 | } |
|
107 | 107 | |
|
108 | 108 | pub fn peek(&self) -> Option<Revision> { |
|
109 | 109 | self.visit.peek().map(|&r| r) |
|
110 | 110 | } |
|
111 | 111 | |
|
112 | 112 | /// Tell if the iterator is about an empty set |
|
113 | 113 | /// |
|
114 | 114 | /// The result does not depend whether the iterator has been consumed |
|
115 | 115 | /// or not. |
|
116 | 116 | /// This is mostly meant for iterators backing a lazy ancestors set |
|
117 | 117 | pub fn is_empty(&self) -> bool { |
|
118 | 118 | if self.visit.len() > 0 { |
|
119 | 119 | return false; |
|
120 | 120 | } |
|
121 | 121 | if self.seen.len() > 1 { |
|
122 | 122 | return false; |
|
123 | 123 | } |
|
124 | 124 | // at this point, the seen set is at most a singleton. |
|
125 | 125 | // If not `self.inclusive`, it's still possible that it has only |
|
126 | 126 | // the null revision |
|
127 | 127 | self.seen.is_empty() || self.seen.contains(&NULL_REVISION) |
|
128 | 128 | } |
|
129 | 129 | } |
|
130 | 130 | |
|
131 | 131 | /// Main implementation for the iterator |
|
132 | 132 | /// |
|
133 | 133 | /// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py` |
|
134 | 134 | /// with a few non crucial differences: |
|
135 | 135 | /// |
|
136 | 136 | /// - there's no filtering of invalid parent revisions. Actually, it should be |
|
137 | 137 | /// consistent and more efficient to filter them from the end caller. |
|
138 | 138 | /// - we don't have the optimization for adjacent revisions (i.e., the case |
|
139 | 139 | /// where `p1 == rev - 1`), because it amounts to update the first element of |
|
140 | 140 | /// the heap without sifting, which Rust's BinaryHeap doesn't let us do. |
|
141 | 141 | /// - we save a few pushes by comparing with `stoprev` before pushing |
|
142 | 142 | impl<G: Graph> Iterator for AncestorsIterator<G> { |
|
143 | 143 | type Item = Result<Revision, GraphError>; |
|
144 | 144 | |
|
145 | 145 | fn next(&mut self) -> Option<Self::Item> { |
|
146 | 146 | let current = match self.visit.peek() { |
|
147 | 147 | None => { |
|
148 | 148 | return None; |
|
149 | 149 | } |
|
150 | 150 | Some(c) => *c, |
|
151 | 151 | }; |
|
152 | 152 | let [p1, p2] = match self.graph.parents(current) { |
|
153 | 153 | Ok(ps) => ps, |
|
154 | 154 | Err(e) => return Some(Err(e)), |
|
155 | 155 | }; |
|
156 | 156 | if p1 < self.stoprev || !self.seen.insert(p1) { |
|
157 | 157 | self.visit.pop(); |
|
158 | 158 | } else { |
|
159 | 159 | *(self.visit.peek_mut().unwrap()) = p1; |
|
160 | 160 | }; |
|
161 | 161 | |
|
162 | 162 | self.conditionally_push_rev(p2); |
|
163 | 163 | Some(Ok(current)) |
|
164 | 164 | } |
|
165 | 165 | } |
|
166 | 166 | |
|
167 | 167 | impl<G: Graph + Clone> LazyAncestors<G> { |
|
168 | 168 | pub fn new( |
|
169 | 169 | graph: G, |
|
170 | 170 | initrevs: impl IntoIterator<Item = Revision>, |
|
171 | 171 | stoprev: Revision, |
|
172 | 172 | inclusive: bool, |
|
173 | 173 | ) -> Result<Self, GraphError> { |
|
174 | 174 | let v: Vec<Revision> = initrevs.into_iter().collect(); |
|
175 | 175 | Ok(LazyAncestors { |
|
176 | 176 | graph: graph.clone(), |
|
177 | 177 | containsiter: AncestorsIterator::new( |
|
178 | 178 | graph, |
|
179 | 179 | v.iter().cloned(), |
|
180 | 180 | stoprev, |
|
181 | 181 | inclusive, |
|
182 | 182 | )?, |
|
183 | 183 | initrevs: v, |
|
184 | 184 | stoprev: stoprev, |
|
185 | 185 | inclusive: inclusive, |
|
186 | 186 | }) |
|
187 | 187 | } |
|
188 | 188 | |
|
189 | 189 | pub fn contains(&mut self, rev: Revision) -> Result<bool, GraphError> { |
|
190 | 190 | self.containsiter.contains(rev) |
|
191 | 191 | } |
|
192 | 192 | |
|
193 | 193 | pub fn is_empty(&self) -> bool { |
|
194 | 194 | self.containsiter.is_empty() |
|
195 | 195 | } |
|
196 | 196 | |
|
197 | 197 | pub fn iter(&self) -> AncestorsIterator<G> { |
|
198 | 198 | // the arguments being the same as for self.containsiter, we know |
|
199 | 199 | // for sure that AncestorsIterator constructor can't fail |
|
200 | 200 | AncestorsIterator::new( |
|
201 | 201 | self.graph.clone(), |
|
202 | 202 | self.initrevs.iter().cloned(), |
|
203 | 203 | self.stoprev, |
|
204 | 204 | self.inclusive, |
|
205 | 205 | ) |
|
206 | 206 | .unwrap() |
|
207 | 207 | } |
|
208 | 208 | } |
|
209 | 209 | |
|
210 | 210 | impl<G: Graph> MissingAncestors<G> { |
|
211 | 211 | pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self { |
|
212 |
|
|
|
213 | if bases.is_empty() { | |
|
214 | bases.insert(NULL_REVISION); | |
|
215 | } | |
|
216 | MissingAncestors { graph, bases } | |
|
212 | MissingAncestors { graph: graph, bases: bases.into_iter().collect() } | |
|
217 | 213 | } |
|
218 | 214 | |
|
219 | 215 | pub fn has_bases(&self) -> bool { |
|
220 | self.bases.iter().any(|&b| b != NULL_REVISION) | |
|
216 | !self.bases.is_empty() | |
|
221 | 217 | } |
|
222 | 218 | |
|
223 | 219 | /// Return a reference to current bases. |
|
224 | 220 | /// |
|
225 | 221 | /// This is useful in unit tests, but also setdiscovery.py does |
|
226 | 222 | /// read the bases attribute of a ancestor.missingancestors instance. |
|
227 | 223 | pub fn get_bases<'a>(&'a self) -> &'a HashSet<Revision> { |
|
228 | 224 | &self.bases |
|
229 | 225 | } |
|
230 | 226 | |
|
231 | 227 | /// Computes the relative heads of current bases. |
|
232 | 228 | /// |
|
233 | 229 | /// The object is still usable after this. |
|
234 | 230 | pub fn bases_heads(&self) -> Result<HashSet<Revision>, GraphError> { |
|
235 | 231 | dagops::heads(&self.graph, self.bases.iter()) |
|
236 | 232 | } |
|
237 | 233 | |
|
238 | 234 | /// Consumes the object and returns the relative heads of its bases. |
|
239 | 235 | pub fn into_bases_heads(mut self) -> Result<HashSet<Revision>, GraphError> { |
|
240 | 236 | dagops::retain_heads(&self.graph, &mut self.bases)?; |
|
241 | 237 | Ok(self.bases) |
|
242 | 238 | } |
|
243 | 239 | |
|
244 | 240 | pub fn add_bases( |
|
245 | 241 | &mut self, |
|
246 | 242 | new_bases: impl IntoIterator<Item = Revision>, |
|
247 | 243 | ) { |
|
248 |
self.bases |
|
|
244 | self.bases | |
|
245 | .extend(new_bases.into_iter().filter(|&rev| rev != NULL_REVISION)); | |
|
249 | 246 | } |
|
250 | 247 | |
|
251 | 248 | /// Remove all ancestors of self.bases from the revs set (in place) |
|
252 | 249 | pub fn remove_ancestors_from( |
|
253 | 250 | &mut self, |
|
254 | 251 | revs: &mut HashSet<Revision>, |
|
255 | 252 | ) -> Result<(), GraphError> { |
|
256 | 253 | revs.retain(|r| !self.bases.contains(r)); |
|
257 | // the null revision is always an ancestor | |
|
254 | // the null revision is always an ancestor. Logically speaking | |
|
255 | // it's debatable in case bases is empty, but the Python | |
|
256 | // implementation always adds NULL_REVISION to bases, making it | |
|
257 | // unconditionnally true. | |
|
258 | 258 | revs.remove(&NULL_REVISION); |
|
259 | 259 | if revs.is_empty() { |
|
260 | 260 | return Ok(()); |
|
261 | 261 | } |
|
262 | 262 | // anything in revs > start is definitely not an ancestor of bases |
|
263 | 263 | // revs <= start need to be investigated |
|
264 | 264 | // TODO optim: if a missingancestors is to be used several times, |
|
265 | 265 | // we shouldn't need to iterate each time on bases |
|
266 | 266 | let start = match self.bases.iter().cloned().max() { |
|
267 | 267 | Some(m) => m, |
|
268 | None => { | |
|
269 | // bases is empty (shouldn't happen, but let's be safe) | |
|
268 | None => { // self.bases is empty | |
|
270 | 269 | return Ok(()); |
|
271 | 270 | } |
|
272 | 271 | }; |
|
273 | 272 | // whatever happens, we'll keep at least keepcount of them |
|
274 | 273 | // knowing this gives us a earlier stop condition than |
|
275 | 274 | // going all the way to the root |
|
276 | 275 | let keepcount = revs.iter().filter(|r| **r > start).count(); |
|
277 | 276 | |
|
278 | 277 | let mut curr = start; |
|
279 | 278 | while curr != NULL_REVISION && revs.len() > keepcount { |
|
280 | 279 | if self.bases.contains(&curr) { |
|
281 | 280 | revs.remove(&curr); |
|
282 | 281 | self.add_parents(curr)?; |
|
283 | 282 | } |
|
284 | 283 | curr -= 1; |
|
285 | 284 | } |
|
286 | 285 | Ok(()) |
|
287 | 286 | } |
|
288 | 287 | |
|
289 | 288 | /// Add rev's parents to self.bases |
|
290 | 289 | #[inline] |
|
291 | 290 | fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> { |
|
292 | 291 | // No need to bother the set with inserting NULL_REVISION over and |
|
293 | 292 | // over |
|
294 | 293 | for p in self.graph.parents(rev)?.iter().cloned() { |
|
295 | 294 | if p != NULL_REVISION { |
|
296 | 295 | self.bases.insert(p); |
|
297 | 296 | } |
|
298 | 297 | } |
|
299 | 298 | Ok(()) |
|
300 | 299 | } |
|
301 | 300 | |
|
302 | 301 | /// Return all the ancestors of revs that are not ancestors of self.bases |
|
303 | 302 | /// |
|
304 | 303 | /// This may include elements from revs. |
|
305 | 304 | /// |
|
306 | 305 | /// Equivalent to the revset (::revs - ::self.bases). Revs are returned in |
|
307 | 306 | /// revision number order, which is a topological order. |
|
308 | 307 | pub fn missing_ancestors( |
|
309 | 308 | &mut self, |
|
310 | 309 | revs: impl IntoIterator<Item = Revision>, |
|
311 | 310 | ) -> Result<Vec<Revision>, GraphError> { |
|
312 | 311 | // just for convenience and comparison with Python version |
|
313 | 312 | let bases_visit = &mut self.bases; |
|
314 | 313 | let mut revs: HashSet<Revision> = revs |
|
315 | 314 | .into_iter() |
|
316 | 315 | .filter(|r| !bases_visit.contains(r)) |
|
317 | 316 | .collect(); |
|
318 | 317 | let revs_visit = &mut revs; |
|
319 | 318 | let mut both_visit: HashSet<Revision> = |
|
320 | 319 | revs_visit.intersection(&bases_visit).cloned().collect(); |
|
321 | 320 | if revs_visit.is_empty() { |
|
322 | 321 | return Ok(Vec::new()); |
|
323 | 322 | } |
|
324 | 323 | |
|
325 | 324 | let max_bases = |
|
326 | 325 | bases_visit.iter().cloned().max().unwrap_or(NULL_REVISION); |
|
327 | 326 | let max_revs = |
|
328 | 327 | revs_visit.iter().cloned().max().unwrap_or(NULL_REVISION); |
|
329 | 328 | let start = max(max_bases, max_revs); |
|
330 | 329 | |
|
331 | 330 | // TODO heuristics for with_capacity()? |
|
332 | 331 | let mut missing: Vec<Revision> = Vec::new(); |
|
333 | 332 | for curr in (0..=start).rev() { |
|
334 | 333 | if revs_visit.is_empty() { |
|
335 | 334 | break; |
|
336 | 335 | } |
|
337 | 336 | if both_visit.remove(&curr) { |
|
338 | 337 | // curr's parents might have made it into revs_visit through |
|
339 | 338 | // another path |
|
340 | 339 | for p in self.graph.parents(curr)?.iter().cloned() { |
|
341 | 340 | if p == NULL_REVISION { |
|
342 | 341 | continue; |
|
343 | 342 | } |
|
344 | 343 | revs_visit.remove(&p); |
|
345 | 344 | bases_visit.insert(p); |
|
346 | 345 | both_visit.insert(p); |
|
347 | 346 | } |
|
348 | 347 | } else if revs_visit.remove(&curr) { |
|
349 | 348 | missing.push(curr); |
|
350 | 349 | for p in self.graph.parents(curr)?.iter().cloned() { |
|
351 | 350 | if p == NULL_REVISION { |
|
352 | 351 | continue; |
|
353 | 352 | } |
|
354 | 353 | if bases_visit.contains(&p) { |
|
355 | 354 | // p is already known to be an ancestor of revs_visit |
|
356 | 355 | revs_visit.remove(&p); |
|
357 | 356 | both_visit.insert(p); |
|
358 | 357 | } else if both_visit.contains(&p) { |
|
359 | 358 | // p should have been in bases_visit |
|
360 | 359 | revs_visit.remove(&p); |
|
361 | 360 | bases_visit.insert(p); |
|
362 | 361 | } else { |
|
363 | 362 | // visit later |
|
364 | 363 | revs_visit.insert(p); |
|
365 | 364 | } |
|
366 | 365 | } |
|
367 | 366 | } else if bases_visit.contains(&curr) { |
|
368 | 367 | for p in self.graph.parents(curr)?.iter().cloned() { |
|
369 | 368 | if p == NULL_REVISION { |
|
370 | 369 | continue; |
|
371 | 370 | } |
|
372 | 371 | if revs_visit.remove(&p) || both_visit.contains(&p) { |
|
373 | 372 | // p is an ancestor of bases_visit, and is implicitly |
|
374 | 373 | // in revs_visit, which means p is ::revs & ::bases. |
|
375 | 374 | bases_visit.insert(p); |
|
376 | 375 | both_visit.insert(p); |
|
377 | 376 | } else { |
|
378 | 377 | bases_visit.insert(p); |
|
379 | 378 | } |
|
380 | 379 | } |
|
381 | 380 | } |
|
382 | 381 | } |
|
383 | 382 | missing.reverse(); |
|
384 | 383 | Ok(missing) |
|
385 | 384 | } |
|
386 | 385 | } |
|
387 | 386 | |
|
388 | 387 | #[cfg(test)] |
|
389 | 388 | mod tests { |
|
390 | 389 | |
|
391 | 390 | use super::*; |
|
392 | 391 | use crate::testing::{SampleGraph, VecGraph}; |
|
393 | 392 | use std::iter::FromIterator; |
|
394 | 393 | |
|
395 | 394 | fn list_ancestors<G: Graph>( |
|
396 | 395 | graph: G, |
|
397 | 396 | initrevs: Vec<Revision>, |
|
398 | 397 | stoprev: Revision, |
|
399 | 398 | inclusive: bool, |
|
400 | 399 | ) -> Vec<Revision> { |
|
401 | 400 | AncestorsIterator::new(graph, initrevs, stoprev, inclusive) |
|
402 | 401 | .unwrap() |
|
403 | 402 | .map(|res| res.unwrap()) |
|
404 | 403 | .collect() |
|
405 | 404 | } |
|
406 | 405 | |
|
407 | 406 | #[test] |
|
408 | 407 | /// Same tests as test-ancestor.py, without membership |
|
409 | 408 | /// (see also test-ancestor.py.out) |
|
410 | 409 | fn test_list_ancestor() { |
|
411 | 410 | assert_eq!(list_ancestors(SampleGraph, vec![], 0, false), vec![]); |
|
412 | 411 | assert_eq!( |
|
413 | 412 | list_ancestors(SampleGraph, vec![11, 13], 0, false), |
|
414 | 413 | vec![8, 7, 4, 3, 2, 1, 0] |
|
415 | 414 | ); |
|
416 | 415 | assert_eq!( |
|
417 | 416 | list_ancestors(SampleGraph, vec![1, 3], 0, false), |
|
418 | 417 | vec![1, 0] |
|
419 | 418 | ); |
|
420 | 419 | assert_eq!( |
|
421 | 420 | list_ancestors(SampleGraph, vec![11, 13], 0, true), |
|
422 | 421 | vec![13, 11, 8, 7, 4, 3, 2, 1, 0] |
|
423 | 422 | ); |
|
424 | 423 | assert_eq!( |
|
425 | 424 | list_ancestors(SampleGraph, vec![11, 13], 6, false), |
|
426 | 425 | vec![8, 7] |
|
427 | 426 | ); |
|
428 | 427 | assert_eq!( |
|
429 | 428 | list_ancestors(SampleGraph, vec![11, 13], 6, true), |
|
430 | 429 | vec![13, 11, 8, 7] |
|
431 | 430 | ); |
|
432 | 431 | assert_eq!( |
|
433 | 432 | list_ancestors(SampleGraph, vec![11, 13], 11, true), |
|
434 | 433 | vec![13, 11] |
|
435 | 434 | ); |
|
436 | 435 | assert_eq!( |
|
437 | 436 | list_ancestors(SampleGraph, vec![11, 13], 12, true), |
|
438 | 437 | vec![13] |
|
439 | 438 | ); |
|
440 | 439 | assert_eq!( |
|
441 | 440 | list_ancestors(SampleGraph, vec![10, 1], 0, true), |
|
442 | 441 | vec![10, 5, 4, 2, 1, 0] |
|
443 | 442 | ); |
|
444 | 443 | } |
|
445 | 444 | |
|
446 | 445 | #[test] |
|
447 | 446 | /// Corner case that's not directly in test-ancestors.py, but |
|
448 | 447 | /// that happens quite often, as demonstrated by running the whole |
|
449 | 448 | /// suite. |
|
450 | 449 | /// For instance, run tests/test-obsolete-checkheads.t |
|
451 | 450 | fn test_nullrev_input() { |
|
452 | 451 | let mut iter = |
|
453 | 452 | AncestorsIterator::new(SampleGraph, vec![-1], 0, false).unwrap(); |
|
454 | 453 | assert_eq!(iter.next(), None) |
|
455 | 454 | } |
|
456 | 455 | |
|
457 | 456 | #[test] |
|
458 | 457 | fn test_contains() { |
|
459 | 458 | let mut lazy = |
|
460 | 459 | AncestorsIterator::new(SampleGraph, vec![10, 1], 0, true).unwrap(); |
|
461 | 460 | assert!(lazy.contains(1).unwrap()); |
|
462 | 461 | assert!(!lazy.contains(3).unwrap()); |
|
463 | 462 | |
|
464 | 463 | let mut lazy = |
|
465 | 464 | AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap(); |
|
466 | 465 | assert!(!lazy.contains(NULL_REVISION).unwrap()); |
|
467 | 466 | } |
|
468 | 467 | |
|
469 | 468 | #[test] |
|
470 | 469 | fn test_peek() { |
|
471 | 470 | let mut iter = |
|
472 | 471 | AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap(); |
|
473 | 472 | // peek() gives us the next value |
|
474 | 473 | assert_eq!(iter.peek(), Some(10)); |
|
475 | 474 | // but it's not been consumed |
|
476 | 475 | assert_eq!(iter.next(), Some(Ok(10))); |
|
477 | 476 | // and iteration resumes normally |
|
478 | 477 | assert_eq!(iter.next(), Some(Ok(5))); |
|
479 | 478 | |
|
480 | 479 | // let's drain the iterator to test peek() at the end |
|
481 | 480 | while iter.next().is_some() {} |
|
482 | 481 | assert_eq!(iter.peek(), None); |
|
483 | 482 | } |
|
484 | 483 | |
|
485 | 484 | #[test] |
|
486 | 485 | fn test_empty() { |
|
487 | 486 | let mut iter = |
|
488 | 487 | AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap(); |
|
489 | 488 | assert!(!iter.is_empty()); |
|
490 | 489 | while iter.next().is_some() {} |
|
491 | 490 | assert!(!iter.is_empty()); |
|
492 | 491 | |
|
493 | 492 | let iter = |
|
494 | 493 | AncestorsIterator::new(SampleGraph, vec![], 0, true).unwrap(); |
|
495 | 494 | assert!(iter.is_empty()); |
|
496 | 495 | |
|
497 | 496 | // case where iter.seen == {NULL_REVISION} |
|
498 | 497 | let iter = |
|
499 | 498 | AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap(); |
|
500 | 499 | assert!(iter.is_empty()); |
|
501 | 500 | } |
|
502 | 501 | |
|
503 | 502 | /// A corrupted Graph, supporting error handling tests |
|
504 | 503 | #[derive(Clone, Debug)] |
|
505 | 504 | struct Corrupted; |
|
506 | 505 | |
|
507 | 506 | impl Graph for Corrupted { |
|
508 | 507 | fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> { |
|
509 | 508 | match rev { |
|
510 | 509 | 1 => Ok([0, -1]), |
|
511 | 510 | r => Err(GraphError::ParentOutOfRange(r)), |
|
512 | 511 | } |
|
513 | 512 | } |
|
514 | 513 | } |
|
515 | 514 | |
|
516 | 515 | #[test] |
|
517 | 516 | fn test_initrev_out_of_range() { |
|
518 | 517 | // inclusive=false looks up initrev's parents right away |
|
519 | 518 | match AncestorsIterator::new(SampleGraph, vec![25], 0, false) { |
|
520 | 519 | Ok(_) => panic!("Should have been ParentOutOfRange"), |
|
521 | 520 | Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25)), |
|
522 | 521 | } |
|
523 | 522 | } |
|
524 | 523 | |
|
525 | 524 | #[test] |
|
526 | 525 | fn test_next_out_of_range() { |
|
527 | 526 | // inclusive=false looks up initrev's parents right away |
|
528 | 527 | let mut iter = |
|
529 | 528 | AncestorsIterator::new(Corrupted, vec![1], 0, false).unwrap(); |
|
530 | 529 | assert_eq!(iter.next(), Some(Err(GraphError::ParentOutOfRange(0)))); |
|
531 | 530 | } |
|
532 | 531 | |
|
533 | 532 | #[test] |
|
534 | 533 | fn test_lazy_iter_contains() { |
|
535 | 534 | let mut lazy = |
|
536 | 535 | LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap(); |
|
537 | 536 | |
|
538 | 537 | let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect(); |
|
539 | 538 | // compare with iterator tests on the same initial revisions |
|
540 | 539 | assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]); |
|
541 | 540 | |
|
542 | 541 | // contains() results are correct, unaffected by the fact that |
|
543 | 542 | // we consumed entirely an iterator out of lazy |
|
544 | 543 | assert_eq!(lazy.contains(2), Ok(true)); |
|
545 | 544 | assert_eq!(lazy.contains(9), Ok(false)); |
|
546 | 545 | } |
|
547 | 546 | |
|
548 | 547 | #[test] |
|
549 | 548 | fn test_lazy_contains_iter() { |
|
550 | 549 | let mut lazy = |
|
551 | 550 | LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0] |
|
552 | 551 | |
|
553 | 552 | assert_eq!(lazy.contains(2), Ok(true)); |
|
554 | 553 | assert_eq!(lazy.contains(6), Ok(false)); |
|
555 | 554 | |
|
556 | 555 | // after consumption of 2 by the inner iterator, results stay |
|
557 | 556 | // consistent |
|
558 | 557 | assert_eq!(lazy.contains(2), Ok(true)); |
|
559 | 558 | assert_eq!(lazy.contains(5), Ok(false)); |
|
560 | 559 | |
|
561 | 560 | // iter() still gives us a fresh iterator |
|
562 | 561 | let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect(); |
|
563 | 562 | assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]); |
|
564 | 563 | } |
|
565 | 564 | |
|
566 | 565 | #[test] |
|
567 | 566 | /// Test constructor, add/get bases and heads |
|
568 | 567 | fn test_missing_bases() -> Result<(), GraphError> { |
|
569 | 568 | let mut missing_ancestors = |
|
570 | 569 | MissingAncestors::new(SampleGraph, [5, 3, 1, 3].iter().cloned()); |
|
571 | 570 | let mut as_vec: Vec<Revision> = |
|
572 | 571 | missing_ancestors.get_bases().iter().cloned().collect(); |
|
573 | 572 | as_vec.sort(); |
|
574 | 573 | assert_eq!(as_vec, [1, 3, 5]); |
|
575 | 574 | |
|
576 | 575 | missing_ancestors.add_bases([3, 7, 8].iter().cloned()); |
|
577 | 576 | as_vec = missing_ancestors.get_bases().iter().cloned().collect(); |
|
578 | 577 | as_vec.sort(); |
|
579 | 578 | assert_eq!(as_vec, [1, 3, 5, 7, 8]); |
|
580 | 579 | |
|
581 | 580 | as_vec = missing_ancestors.bases_heads()?.iter().cloned().collect(); |
|
582 | 581 | as_vec.sort(); |
|
583 | 582 | assert_eq!(as_vec, [3, 5, 7, 8]); |
|
584 | 583 | Ok(()) |
|
585 | 584 | } |
|
586 | 585 | |
|
587 | 586 | fn assert_missing_remove( |
|
588 | 587 | bases: &[Revision], |
|
589 | 588 | revs: &[Revision], |
|
590 | 589 | expected: &[Revision], |
|
591 | 590 | ) { |
|
592 | 591 | let mut missing_ancestors = |
|
593 | 592 | MissingAncestors::new(SampleGraph, bases.iter().cloned()); |
|
594 | 593 | let mut revset: HashSet<Revision> = revs.iter().cloned().collect(); |
|
595 | 594 | missing_ancestors |
|
596 | 595 | .remove_ancestors_from(&mut revset) |
|
597 | 596 | .unwrap(); |
|
598 | 597 | let mut as_vec: Vec<Revision> = revset.into_iter().collect(); |
|
599 | 598 | as_vec.sort(); |
|
600 | 599 | assert_eq!(as_vec.as_slice(), expected); |
|
601 | 600 | } |
|
602 | 601 | |
|
603 | 602 | #[test] |
|
604 | 603 | fn test_missing_remove() { |
|
605 | 604 | assert_missing_remove( |
|
606 | 605 | &[1, 2, 3, 4, 7], |
|
607 | 606 | Vec::from_iter(1..10).as_slice(), |
|
608 | 607 | &[5, 6, 8, 9], |
|
609 | 608 | ); |
|
610 | 609 | assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]); |
|
611 | 610 | assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]); |
|
612 | 611 | } |
|
613 | 612 | |
|
614 | 613 | fn assert_missing_ancestors( |
|
615 | 614 | bases: &[Revision], |
|
616 | 615 | revs: &[Revision], |
|
617 | 616 | expected: &[Revision], |
|
618 | 617 | ) { |
|
619 | 618 | let mut missing_ancestors = |
|
620 | 619 | MissingAncestors::new(SampleGraph, bases.iter().cloned()); |
|
621 | 620 | let missing = missing_ancestors |
|
622 | 621 | .missing_ancestors(revs.iter().cloned()) |
|
623 | 622 | .unwrap(); |
|
624 | 623 | assert_eq!(missing.as_slice(), expected); |
|
625 | 624 | } |
|
626 | 625 | |
|
627 | 626 | #[test] |
|
628 | 627 | fn test_missing_ancestors() { |
|
629 | 628 | // examples taken from test-ancestors.py by having it run |
|
630 | 629 | // on the same graph (both naive and fast Python algs) |
|
631 | 630 | assert_missing_ancestors(&[10], &[11], &[3, 7, 11]); |
|
632 | 631 | assert_missing_ancestors(&[11], &[10], &[5, 10]); |
|
633 | 632 | assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]); |
|
634 | 633 | } |
|
635 | 634 | |
|
636 | 635 | /// An interesting case found by a random generator similar to |
|
637 | 636 | /// the one in test-ancestor.py. An early version of Rust MissingAncestors |
|
638 | 637 | /// failed this, yet none of the integration tests of the whole suite |
|
639 | 638 | /// catched it. |
|
640 | 639 | #[test] |
|
641 | 640 | fn test_remove_ancestors_from_case1() { |
|
642 | 641 | let graph: VecGraph = vec![ |
|
643 | 642 | [NULL_REVISION, NULL_REVISION], |
|
644 | 643 | [0, NULL_REVISION], |
|
645 | 644 | [1, 0], |
|
646 | 645 | [2, 1], |
|
647 | 646 | [3, NULL_REVISION], |
|
648 | 647 | [4, NULL_REVISION], |
|
649 | 648 | [5, 1], |
|
650 | 649 | [2, NULL_REVISION], |
|
651 | 650 | [7, NULL_REVISION], |
|
652 | 651 | [8, NULL_REVISION], |
|
653 | 652 | [9, NULL_REVISION], |
|
654 | 653 | [10, 1], |
|
655 | 654 | [3, NULL_REVISION], |
|
656 | 655 | [12, NULL_REVISION], |
|
657 | 656 | [13, NULL_REVISION], |
|
658 | 657 | [14, NULL_REVISION], |
|
659 | 658 | [4, NULL_REVISION], |
|
660 | 659 | [16, NULL_REVISION], |
|
661 | 660 | [17, NULL_REVISION], |
|
662 | 661 | [18, NULL_REVISION], |
|
663 | 662 | [19, 11], |
|
664 | 663 | [20, NULL_REVISION], |
|
665 | 664 | [21, NULL_REVISION], |
|
666 | 665 | [22, NULL_REVISION], |
|
667 | 666 | [23, NULL_REVISION], |
|
668 | 667 | [2, NULL_REVISION], |
|
669 | 668 | [3, NULL_REVISION], |
|
670 | 669 | [26, 24], |
|
671 | 670 | [27, NULL_REVISION], |
|
672 | 671 | [28, NULL_REVISION], |
|
673 | 672 | [12, NULL_REVISION], |
|
674 | 673 | [1, NULL_REVISION], |
|
675 | 674 | [1, 9], |
|
676 | 675 | [32, NULL_REVISION], |
|
677 | 676 | [33, NULL_REVISION], |
|
678 | 677 | [34, 31], |
|
679 | 678 | [35, NULL_REVISION], |
|
680 | 679 | [36, 26], |
|
681 | 680 | [37, NULL_REVISION], |
|
682 | 681 | [38, NULL_REVISION], |
|
683 | 682 | [39, NULL_REVISION], |
|
684 | 683 | [40, NULL_REVISION], |
|
685 | 684 | [41, NULL_REVISION], |
|
686 | 685 | [42, 26], |
|
687 | 686 | [0, NULL_REVISION], |
|
688 | 687 | [44, NULL_REVISION], |
|
689 | 688 | [45, 4], |
|
690 | 689 | [40, NULL_REVISION], |
|
691 | 690 | [47, NULL_REVISION], |
|
692 | 691 | [36, 0], |
|
693 | 692 | [49, NULL_REVISION], |
|
694 | 693 | [NULL_REVISION, NULL_REVISION], |
|
695 | 694 | [51, NULL_REVISION], |
|
696 | 695 | [52, NULL_REVISION], |
|
697 | 696 | [53, NULL_REVISION], |
|
698 | 697 | [14, NULL_REVISION], |
|
699 | 698 | [55, NULL_REVISION], |
|
700 | 699 | [15, NULL_REVISION], |
|
701 | 700 | [23, NULL_REVISION], |
|
702 | 701 | [58, NULL_REVISION], |
|
703 | 702 | [59, NULL_REVISION], |
|
704 | 703 | [2, NULL_REVISION], |
|
705 | 704 | [61, 59], |
|
706 | 705 | [62, NULL_REVISION], |
|
707 | 706 | [63, NULL_REVISION], |
|
708 | 707 | [NULL_REVISION, NULL_REVISION], |
|
709 | 708 | [65, NULL_REVISION], |
|
710 | 709 | [66, NULL_REVISION], |
|
711 | 710 | [67, NULL_REVISION], |
|
712 | 711 | [68, NULL_REVISION], |
|
713 | 712 | [37, 28], |
|
714 | 713 | [69, 25], |
|
715 | 714 | [71, NULL_REVISION], |
|
716 | 715 | [72, NULL_REVISION], |
|
717 | 716 | [50, 2], |
|
718 | 717 | [74, NULL_REVISION], |
|
719 | 718 | [12, NULL_REVISION], |
|
720 | 719 | [18, NULL_REVISION], |
|
721 | 720 | [77, NULL_REVISION], |
|
722 | 721 | [78, NULL_REVISION], |
|
723 | 722 | [79, NULL_REVISION], |
|
724 | 723 | [43, 33], |
|
725 | 724 | [81, NULL_REVISION], |
|
726 | 725 | [82, NULL_REVISION], |
|
727 | 726 | [83, NULL_REVISION], |
|
728 | 727 | [84, 45], |
|
729 | 728 | [85, NULL_REVISION], |
|
730 | 729 | [86, NULL_REVISION], |
|
731 | 730 | [NULL_REVISION, NULL_REVISION], |
|
732 | 731 | [88, NULL_REVISION], |
|
733 | 732 | [NULL_REVISION, NULL_REVISION], |
|
734 | 733 | [76, 83], |
|
735 | 734 | [44, NULL_REVISION], |
|
736 | 735 | [92, NULL_REVISION], |
|
737 | 736 | [93, NULL_REVISION], |
|
738 | 737 | [9, NULL_REVISION], |
|
739 | 738 | [95, 67], |
|
740 | 739 | [96, NULL_REVISION], |
|
741 | 740 | [97, NULL_REVISION], |
|
742 | 741 | [NULL_REVISION, NULL_REVISION], |
|
743 | 742 | ]; |
|
744 | 743 | let problem_rev = 28 as Revision; |
|
745 | 744 | let problem_base = 70 as Revision; |
|
746 | 745 | // making the problem obvious: problem_rev is a parent of problem_base |
|
747 | 746 | assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev); |
|
748 | 747 | |
|
749 | 748 | let mut missing_ancestors: MissingAncestors<VecGraph> = |
|
750 | 749 | MissingAncestors::new( |
|
751 | 750 | graph, |
|
752 | 751 | [60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6] |
|
753 | 752 | .iter() |
|
754 | 753 | .cloned(), |
|
755 | 754 | ); |
|
756 | 755 | assert!(missing_ancestors.bases.contains(&problem_base)); |
|
757 | 756 | |
|
758 | 757 | let mut revs: HashSet<Revision> = |
|
759 | 758 | [4, 12, 41, 28, 68, 38, 1, 30, 56, 44] |
|
760 | 759 | .iter() |
|
761 | 760 | .cloned() |
|
762 | 761 | .collect(); |
|
763 | 762 | missing_ancestors.remove_ancestors_from(&mut revs).unwrap(); |
|
764 | 763 | assert!(!revs.contains(&problem_rev)); |
|
765 | 764 | } |
|
766 | 765 | |
|
767 | 766 | } |
General Comments 0
You need to be logged in to leave comments.
Login now