##// END OF EJS Templates
rust-nodemap: remove unnecessary explicit lifetime...
Martin von Zweigbergk -
r49986:b97835b2 default
parent child Browse files
Show More
@@ -1,1069 +1,1069 b''
1 1 // Copyright 2018-2020 Georges Racinet <georges.racinet@octobus.net>
2 2 // and Mercurial contributors
3 3 //
4 4 // This software may be used and distributed according to the terms of the
5 5 // GNU General Public License version 2 or any later version.
6 6 //! Indexing facilities for fast retrieval of `Revision` from `Node`
7 7 //!
8 8 //! This provides a variation on the 16-ary radix tree that is
9 9 //! provided as "nodetree" in revlog.c, ready for append-only persistence
10 10 //! on disk.
11 11 //!
12 12 //! Following existing implicit conventions, the "nodemap" terminology
13 13 //! is used in a more abstract context.
14 14
15 15 use super::{
16 16 node::NULL_NODE, Node, NodePrefix, Revision, RevlogIndex, NULL_REVISION,
17 17 };
18 18
19 19 use bytes_cast::{unaligned, BytesCast};
20 20 use std::cmp::max;
21 21 use std::fmt;
22 22 use std::mem::{self, align_of, size_of};
23 23 use std::ops::Deref;
24 24 use std::ops::Index;
25 25
26 26 #[derive(Debug, PartialEq)]
27 27 pub enum NodeMapError {
28 28 MultipleResults,
29 29 /// A `Revision` stored in the nodemap could not be found in the index
30 30 RevisionNotInIndex(Revision),
31 31 }
32 32
33 33 /// Mapping system from Mercurial nodes to revision numbers.
34 34 ///
35 35 /// ## `RevlogIndex` and `NodeMap`
36 36 ///
37 37 /// One way to think about their relationship is that
38 38 /// the `NodeMap` is a prefix-oriented reverse index of the `Node` information
39 39 /// carried by a [`RevlogIndex`].
40 40 ///
41 41 /// Many of the methods in this trait take a `RevlogIndex` argument
42 42 /// which is used for validation of their results. This index must naturally
43 43 /// be the one the `NodeMap` is about, and it must be consistent.
44 44 ///
45 45 /// Notably, the `NodeMap` must not store
46 46 /// information about more `Revision` values than there are in the index.
47 47 /// In these methods, an encountered `Revision` is not in the index, a
48 48 /// [`RevisionNotInIndex`] error is returned.
49 49 ///
50 50 /// In insert operations, the rule is thus that the `NodeMap` must always
51 51 /// be updated after the `RevlogIndex`
52 52 /// be updated first, and the `NodeMap` second.
53 53 ///
54 54 /// [`RevisionNotInIndex`]: enum.NodeMapError.html#variant.RevisionNotInIndex
55 55 /// [`RevlogIndex`]: ../trait.RevlogIndex.html
56 56 pub trait NodeMap {
57 57 /// Find the unique `Revision` having the given `Node`
58 58 ///
59 59 /// If no Revision matches the given `Node`, `Ok(None)` is returned.
60 60 fn find_node(
61 61 &self,
62 62 index: &impl RevlogIndex,
63 63 node: &Node,
64 64 ) -> Result<Option<Revision>, NodeMapError> {
65 65 self.find_bin(index, node.into())
66 66 }
67 67
68 68 /// Find the unique Revision whose `Node` starts with a given binary prefix
69 69 ///
70 70 /// If no Revision matches the given prefix, `Ok(None)` is returned.
71 71 ///
72 72 /// If several Revisions match the given prefix, a [`MultipleResults`]
73 73 /// error is returned.
74 74 fn find_bin<'a>(
75 75 &self,
76 76 idx: &impl RevlogIndex,
77 77 prefix: NodePrefix,
78 78 ) -> Result<Option<Revision>, NodeMapError>;
79 79
80 80 /// Give the size of the shortest node prefix that determines
81 81 /// the revision uniquely.
82 82 ///
83 83 /// From a binary node prefix, if it is matched in the node map, this
84 84 /// returns the number of hexadecimal digits that would had sufficed
85 85 /// to find the revision uniquely.
86 86 ///
87 87 /// Returns `None` if no `Revision` could be found for the prefix.
88 88 ///
89 89 /// If several Revisions match the given prefix, a [`MultipleResults`]
90 90 /// error is returned.
91 91 fn unique_prefix_len_bin<'a>(
92 92 &self,
93 93 idx: &impl RevlogIndex,
94 94 node_prefix: NodePrefix,
95 95 ) -> Result<Option<usize>, NodeMapError>;
96 96
97 97 /// Same as `unique_prefix_len_bin`, with a full `Node` as input
98 98 fn unique_prefix_len_node(
99 99 &self,
100 100 idx: &impl RevlogIndex,
101 101 node: &Node,
102 102 ) -> Result<Option<usize>, NodeMapError> {
103 103 self.unique_prefix_len_bin(idx, node.into())
104 104 }
105 105 }
106 106
107 107 pub trait MutableNodeMap: NodeMap {
108 108 fn insert<I: RevlogIndex>(
109 109 &mut self,
110 110 index: &I,
111 111 node: &Node,
112 112 rev: Revision,
113 113 ) -> Result<(), NodeMapError>;
114 114 }
115 115
116 116 /// Low level NodeTree [`Blocks`] elements
117 117 ///
118 118 /// These are exactly as for instance on persistent storage.
119 119 type RawElement = unaligned::I32Be;
120 120
121 121 /// High level representation of values in NodeTree
122 122 /// [`Blocks`](struct.Block.html)
123 123 ///
124 124 /// This is the high level representation that most algorithms should
125 125 /// use.
126 126 #[derive(Clone, Debug, Eq, PartialEq)]
127 127 enum Element {
128 128 Rev(Revision),
129 129 Block(usize),
130 130 None,
131 131 }
132 132
133 133 impl From<RawElement> for Element {
134 134 /// Conversion from low level representation, after endianness conversion.
135 135 ///
136 136 /// See [`Block`](struct.Block.html) for explanation about the encoding.
137 137 fn from(raw: RawElement) -> Element {
138 138 let int = raw.get();
139 139 if int >= 0 {
140 140 Element::Block(int as usize)
141 141 } else if int == -1 {
142 142 Element::None
143 143 } else {
144 144 Element::Rev(-int - 2)
145 145 }
146 146 }
147 147 }
148 148
149 149 impl From<Element> for RawElement {
150 150 fn from(element: Element) -> RawElement {
151 151 RawElement::from(match element {
152 152 Element::None => 0,
153 153 Element::Block(i) => i as i32,
154 154 Element::Rev(rev) => -rev - 2,
155 155 })
156 156 }
157 157 }
158 158
159 159 /// A logical block of the `NodeTree`, packed with a fixed size.
160 160 ///
161 161 /// These are always used in container types implementing `Index<Block>`,
162 162 /// such as `&Block`
163 163 ///
164 164 /// As an array of integers, its ith element encodes that the
165 165 /// ith potential edge from the block, representing the ith hexadecimal digit
166 166 /// (nybble) `i` is either:
167 167 ///
168 168 /// - absent (value -1)
169 169 /// - another `Block` in the same indexable container (value β‰₯ 0)
170 170 /// - a `Revision` leaf (value ≀ -2)
171 171 ///
172 172 /// Endianness has to be fixed for consistency on shared storage across
173 173 /// different architectures.
174 174 ///
175 175 /// A key difference with the C `nodetree` is that we need to be
176 176 /// able to represent the [`Block`] at index 0, hence -1 is the empty marker
177 177 /// rather than 0 and the `Revision` range upper limit of -2 instead of -1.
178 178 ///
179 179 /// Another related difference is that `NULL_REVISION` (-1) is not
180 180 /// represented at all, because we want an immutable empty nodetree
181 181 /// to be valid.
182 182
183 183 const ELEMENTS_PER_BLOCK: usize = 16; // number of different values in a nybble
184 184
185 185 #[derive(Copy, Clone, BytesCast, PartialEq)]
186 186 #[repr(transparent)]
187 187 pub struct Block([RawElement; ELEMENTS_PER_BLOCK]);
188 188
189 189 impl Block {
190 190 fn new() -> Self {
191 191 let absent_node = RawElement::from(-1);
192 192 Block([absent_node; ELEMENTS_PER_BLOCK])
193 193 }
194 194
195 195 fn get(&self, nybble: u8) -> Element {
196 196 self.0[nybble as usize].into()
197 197 }
198 198
199 199 fn set(&mut self, nybble: u8, element: Element) {
200 200 self.0[nybble as usize] = element.into()
201 201 }
202 202 }
203 203
204 204 impl fmt::Debug for Block {
205 205 /// sparse representation for testing and debugging purposes
206 206 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
207 207 f.debug_map()
208 208 .entries((0..16).filter_map(|i| match self.get(i) {
209 209 Element::None => None,
210 210 element => Some((i, element)),
211 211 }))
212 212 .finish()
213 213 }
214 214 }
215 215
216 216 /// A mutable 16-radix tree with the root block logically at the end
217 217 ///
218 218 /// Because of the append only nature of our node trees, we need to
219 219 /// keep the original untouched and store new blocks separately.
220 220 ///
221 221 /// The mutable root `Block` is kept apart so that we don't have to rebump
222 222 /// it on each insertion.
223 223 pub struct NodeTree {
224 224 readonly: Box<dyn Deref<Target = [Block]> + Send>,
225 225 growable: Vec<Block>,
226 226 root: Block,
227 227 masked_inner_blocks: usize,
228 228 }
229 229
230 230 impl Index<usize> for NodeTree {
231 231 type Output = Block;
232 232
233 233 fn index(&self, i: usize) -> &Block {
234 234 let ro_len = self.readonly.len();
235 235 if i < ro_len {
236 236 &self.readonly[i]
237 237 } else if i == ro_len + self.growable.len() {
238 238 &self.root
239 239 } else {
240 240 &self.growable[i - ro_len]
241 241 }
242 242 }
243 243 }
244 244
245 245 /// Return `None` unless the `Node` for `rev` has given prefix in `index`.
246 246 fn has_prefix_or_none(
247 247 idx: &impl RevlogIndex,
248 248 prefix: NodePrefix,
249 249 rev: Revision,
250 250 ) -> Result<Option<Revision>, NodeMapError> {
251 251 idx.node(rev)
252 252 .ok_or_else(|| NodeMapError::RevisionNotInIndex(rev))
253 253 .map(|node| {
254 254 if prefix.is_prefix_of(node) {
255 255 Some(rev)
256 256 } else {
257 257 None
258 258 }
259 259 })
260 260 }
261 261
262 262 /// validate that the candidate's node starts indeed with given prefix,
263 263 /// and treat ambiguities related to `NULL_REVISION`.
264 264 ///
265 265 /// From the data in the NodeTree, one can only conclude that some
266 266 /// revision is the only one for a *subprefix* of the one being looked up.
267 267 fn validate_candidate(
268 268 idx: &impl RevlogIndex,
269 269 prefix: NodePrefix,
270 270 candidate: (Option<Revision>, usize),
271 271 ) -> Result<(Option<Revision>, usize), NodeMapError> {
272 272 let (rev, steps) = candidate;
273 273 if let Some(nz_nybble) = prefix.first_different_nybble(&NULL_NODE) {
274 274 rev.map_or(Ok((None, steps)), |r| {
275 275 has_prefix_or_none(idx, prefix, r)
276 276 .map(|opt| (opt, max(steps, nz_nybble + 1)))
277 277 })
278 278 } else {
279 279 // the prefix is only made of zeros; NULL_REVISION always matches it
280 280 // and any other *valid* result is an ambiguity
281 281 match rev {
282 282 None => Ok((Some(NULL_REVISION), steps + 1)),
283 283 Some(r) => match has_prefix_or_none(idx, prefix, r)? {
284 284 None => Ok((Some(NULL_REVISION), steps + 1)),
285 285 _ => Err(NodeMapError::MultipleResults),
286 286 },
287 287 }
288 288 }
289 289 }
290 290
291 291 impl NodeTree {
292 292 /// Initiate a NodeTree from an immutable slice-like of `Block`
293 293 ///
294 294 /// We keep `readonly` and clone its root block if it isn't empty.
295 295 fn new(readonly: Box<dyn Deref<Target = [Block]> + Send>) -> Self {
296 296 let root = readonly.last().cloned().unwrap_or_else(Block::new);
297 297 NodeTree {
298 298 readonly,
299 299 growable: Vec::new(),
300 300 root,
301 301 masked_inner_blocks: 0,
302 302 }
303 303 }
304 304
305 305 /// Create from an opaque bunch of bytes
306 306 ///
307 307 /// The created `NodeTreeBytes` from `buffer`,
308 308 /// of which exactly `amount` bytes are used.
309 309 ///
310 310 /// - `buffer` could be derived from `PyBuffer` and `Mmap` objects.
311 311 /// - `offset` allows for the final file format to include fixed data
312 312 /// (generation number, behavioural flags)
313 313 /// - `amount` is expressed in bytes, and is not automatically derived from
314 314 /// `bytes`, so that a caller that manages them atomically can perform
315 315 /// temporary disk serializations and still rollback easily if needed.
316 316 /// First use-case for this would be to support Mercurial shell hooks.
317 317 ///
318 318 /// panics if `buffer` is smaller than `amount`
319 319 pub fn load_bytes(
320 320 bytes: Box<dyn Deref<Target = [u8]> + Send>,
321 321 amount: usize,
322 322 ) -> Self {
323 323 NodeTree::new(Box::new(NodeTreeBytes::new(bytes, amount)))
324 324 }
325 325
326 326 /// Retrieve added `Block` and the original immutable data
327 327 pub fn into_readonly_and_added(
328 328 self,
329 329 ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<Block>) {
330 330 let mut vec = self.growable;
331 331 let readonly = self.readonly;
332 332 if readonly.last() != Some(&self.root) {
333 333 vec.push(self.root);
334 334 }
335 335 (readonly, vec)
336 336 }
337 337
338 338 /// Retrieve added `Blocks` as bytes, ready to be written to persistent
339 339 /// storage
340 340 pub fn into_readonly_and_added_bytes(
341 341 self,
342 342 ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<u8>) {
343 343 let (readonly, vec) = self.into_readonly_and_added();
344 344 // Prevent running `v`'s destructor so we are in complete control
345 345 // of the allocation.
346 346 let vec = mem::ManuallyDrop::new(vec);
347 347
348 348 // Transmute the `Vec<Block>` to a `Vec<u8>`. Blocks are contiguous
349 349 // bytes, so this is perfectly safe.
350 350 let bytes = unsafe {
351 351 // Check for compatible allocation layout.
352 352 // (Optimized away by constant-folding + dead code elimination.)
353 353 assert_eq!(size_of::<Block>(), 64);
354 354 assert_eq!(align_of::<Block>(), 1);
355 355
356 356 // /!\ Any use of `vec` after this is use-after-free.
357 357 // TODO: use `into_raw_parts` once stabilized
358 358 Vec::from_raw_parts(
359 359 vec.as_ptr() as *mut u8,
360 360 vec.len() * size_of::<Block>(),
361 361 vec.capacity() * size_of::<Block>(),
362 362 )
363 363 };
364 364 (readonly, bytes)
365 365 }
366 366
367 367 /// Total number of blocks
368 368 fn len(&self) -> usize {
369 369 self.readonly.len() + self.growable.len() + 1
370 370 }
371 371
372 372 /// Implemented for completeness
373 373 ///
374 374 /// A `NodeTree` always has at least the mutable root block.
375 375 #[allow(dead_code)]
376 376 fn is_empty(&self) -> bool {
377 377 false
378 378 }
379 379
380 380 /// Main working method for `NodeTree` searches
381 381 ///
382 382 /// The first returned value is the result of analysing `NodeTree` data
383 383 /// *alone*: whereas `None` guarantees that the given prefix is absent
384 384 /// from the `NodeTree` data (but still could match `NULL_NODE`), with
385 385 /// `Some(rev)`, it is to be understood that `rev` is the unique `Revision`
386 386 /// that could match the prefix. Actually, all that can be inferred from
387 387 /// the `NodeTree` data is that `rev` is the revision with the longest
388 388 /// common node prefix with the given prefix.
389 389 ///
390 390 /// The second returned value is the size of the smallest subprefix
391 391 /// of `prefix` that would give the same result, i.e. not the
392 392 /// `MultipleResults` error variant (again, using only the data of the
393 393 /// `NodeTree`).
394 394 fn lookup(
395 395 &self,
396 396 prefix: NodePrefix,
397 397 ) -> Result<(Option<Revision>, usize), NodeMapError> {
398 398 for (i, visit_item) in self.visit(prefix).enumerate() {
399 399 if let Some(opt) = visit_item.final_revision() {
400 400 return Ok((opt, i + 1));
401 401 }
402 402 }
403 403 Err(NodeMapError::MultipleResults)
404 404 }
405 405
406 fn visit<'n>(&'n self, prefix: NodePrefix) -> NodeTreeVisitor<'n> {
406 fn visit(&self, prefix: NodePrefix) -> NodeTreeVisitor {
407 407 NodeTreeVisitor {
408 408 nt: self,
409 409 prefix,
410 410 visit: self.len() - 1,
411 411 nybble_idx: 0,
412 412 done: false,
413 413 }
414 414 }
415 415 /// Return a mutable reference for `Block` at index `idx`.
416 416 ///
417 417 /// If `idx` lies in the immutable area, then the reference is to
418 418 /// a newly appended copy.
419 419 ///
420 420 /// Returns (new_idx, glen, mut_ref) where
421 421 ///
422 422 /// - `new_idx` is the index of the mutable `Block`
423 423 /// - `mut_ref` is a mutable reference to the mutable Block.
424 424 /// - `glen` is the new length of `self.growable`
425 425 ///
426 426 /// Note: the caller wouldn't be allowed to query `self.growable.len()`
427 427 /// itself because of the mutable borrow taken with the returned `Block`
428 428 fn mutable_block(&mut self, idx: usize) -> (usize, &mut Block, usize) {
429 429 let ro_blocks = &self.readonly;
430 430 let ro_len = ro_blocks.len();
431 431 let glen = self.growable.len();
432 432 if idx < ro_len {
433 433 self.masked_inner_blocks += 1;
434 434 self.growable.push(ro_blocks[idx]);
435 435 (glen + ro_len, &mut self.growable[glen], glen + 1)
436 436 } else if glen + ro_len == idx {
437 437 (idx, &mut self.root, glen)
438 438 } else {
439 439 (idx, &mut self.growable[idx - ro_len], glen)
440 440 }
441 441 }
442 442
443 443 /// Main insertion method
444 444 ///
445 445 /// This will dive in the node tree to find the deepest `Block` for
446 446 /// `node`, split it as much as needed and record `node` in there.
447 447 /// The method then backtracks, updating references in all the visited
448 448 /// blocks from the root.
449 449 ///
450 450 /// All the mutated `Block` are copied first to the growable part if
451 451 /// needed. That happens for those in the immutable part except the root.
452 452 pub fn insert<I: RevlogIndex>(
453 453 &mut self,
454 454 index: &I,
455 455 node: &Node,
456 456 rev: Revision,
457 457 ) -> Result<(), NodeMapError> {
458 458 let ro_len = &self.readonly.len();
459 459
460 460 let mut visit_steps: Vec<_> = self.visit(node.into()).collect();
461 461 let read_nybbles = visit_steps.len();
462 462 // visit_steps cannot be empty, since we always visit the root block
463 463 let deepest = visit_steps.pop().unwrap();
464 464
465 465 let (mut block_idx, mut block, mut glen) =
466 466 self.mutable_block(deepest.block_idx);
467 467
468 468 if let Element::Rev(old_rev) = deepest.element {
469 469 let old_node = index
470 470 .node(old_rev)
471 471 .ok_or_else(|| NodeMapError::RevisionNotInIndex(old_rev))?;
472 472 if old_node == node {
473 473 return Ok(()); // avoid creating lots of useless blocks
474 474 }
475 475
476 476 // Looping over the tail of nybbles in both nodes, creating
477 477 // new blocks until we find the difference
478 478 let mut new_block_idx = ro_len + glen;
479 479 let mut nybble = deepest.nybble;
480 480 for nybble_pos in read_nybbles..node.nybbles_len() {
481 481 block.set(nybble, Element::Block(new_block_idx));
482 482
483 483 let new_nybble = node.get_nybble(nybble_pos);
484 484 let old_nybble = old_node.get_nybble(nybble_pos);
485 485
486 486 if old_nybble == new_nybble {
487 487 self.growable.push(Block::new());
488 488 block = &mut self.growable[glen];
489 489 glen += 1;
490 490 new_block_idx += 1;
491 491 nybble = new_nybble;
492 492 } else {
493 493 let mut new_block = Block::new();
494 494 new_block.set(old_nybble, Element::Rev(old_rev));
495 495 new_block.set(new_nybble, Element::Rev(rev));
496 496 self.growable.push(new_block);
497 497 break;
498 498 }
499 499 }
500 500 } else {
501 501 // Free slot in the deepest block: no splitting has to be done
502 502 block.set(deepest.nybble, Element::Rev(rev));
503 503 }
504 504
505 505 // Backtrack over visit steps to update references
506 506 while let Some(visited) = visit_steps.pop() {
507 507 let to_write = Element::Block(block_idx);
508 508 if visit_steps.is_empty() {
509 509 self.root.set(visited.nybble, to_write);
510 510 break;
511 511 }
512 512 let (new_idx, block, _) = self.mutable_block(visited.block_idx);
513 513 if block.get(visited.nybble) == to_write {
514 514 break;
515 515 }
516 516 block.set(visited.nybble, to_write);
517 517 block_idx = new_idx;
518 518 }
519 519 Ok(())
520 520 }
521 521
522 522 /// Make the whole `NodeTree` logically empty, without touching the
523 523 /// immutable part.
524 524 pub fn invalidate_all(&mut self) {
525 525 self.root = Block::new();
526 526 self.growable = Vec::new();
527 527 self.masked_inner_blocks = self.readonly.len();
528 528 }
529 529
530 530 /// Return the number of blocks in the readonly part that are currently
531 531 /// masked in the mutable part.
532 532 ///
533 533 /// The `NodeTree` structure has no efficient way to know how many blocks
534 534 /// are already unreachable in the readonly part.
535 535 ///
536 536 /// After a call to `invalidate_all()`, the returned number can be actually
537 537 /// bigger than the whole readonly part, a conventional way to mean that
538 538 /// all the readonly blocks have been masked. This is what is really
539 539 /// useful to the caller and does not require to know how many were
540 540 /// actually unreachable to begin with.
541 541 pub fn masked_readonly_blocks(&self) -> usize {
542 542 if let Some(readonly_root) = self.readonly.last() {
543 543 if readonly_root == &self.root {
544 544 return 0;
545 545 }
546 546 } else {
547 547 return 0;
548 548 }
549 549 self.masked_inner_blocks + 1
550 550 }
551 551 }
552 552
553 553 pub struct NodeTreeBytes {
554 554 buffer: Box<dyn Deref<Target = [u8]> + Send>,
555 555 len_in_blocks: usize,
556 556 }
557 557
558 558 impl NodeTreeBytes {
559 559 fn new(
560 560 buffer: Box<dyn Deref<Target = [u8]> + Send>,
561 561 amount: usize,
562 562 ) -> Self {
563 563 assert!(buffer.len() >= amount);
564 564 let len_in_blocks = amount / size_of::<Block>();
565 565 NodeTreeBytes {
566 566 buffer,
567 567 len_in_blocks,
568 568 }
569 569 }
570 570 }
571 571
572 572 impl Deref for NodeTreeBytes {
573 573 type Target = [Block];
574 574
575 575 fn deref(&self) -> &[Block] {
576 576 Block::slice_from_bytes(&self.buffer, self.len_in_blocks)
577 577 // `NodeTreeBytes::new` already asserted that `self.buffer` is
578 578 // large enough.
579 579 .unwrap()
580 580 .0
581 581 }
582 582 }
583 583
584 584 struct NodeTreeVisitor<'n> {
585 585 nt: &'n NodeTree,
586 586 prefix: NodePrefix,
587 587 visit: usize,
588 588 nybble_idx: usize,
589 589 done: bool,
590 590 }
591 591
592 592 #[derive(Debug, PartialEq, Clone)]
593 593 struct NodeTreeVisitItem {
594 594 block_idx: usize,
595 595 nybble: u8,
596 596 element: Element,
597 597 }
598 598
599 599 impl<'n> Iterator for NodeTreeVisitor<'n> {
600 600 type Item = NodeTreeVisitItem;
601 601
602 602 fn next(&mut self) -> Option<Self::Item> {
603 603 if self.done || self.nybble_idx >= self.prefix.nybbles_len() {
604 604 return None;
605 605 }
606 606
607 607 let nybble = self.prefix.get_nybble(self.nybble_idx);
608 608 self.nybble_idx += 1;
609 609
610 610 let visit = self.visit;
611 611 let element = self.nt[visit].get(nybble);
612 612 if let Element::Block(idx) = element {
613 613 self.visit = idx;
614 614 } else {
615 615 self.done = true;
616 616 }
617 617
618 618 Some(NodeTreeVisitItem {
619 619 block_idx: visit,
620 620 nybble,
621 621 element,
622 622 })
623 623 }
624 624 }
625 625
626 626 impl NodeTreeVisitItem {
627 627 // Return `Some(opt)` if this item is final, with `opt` being the
628 628 // `Revision` that it may represent.
629 629 //
630 630 // If the item is not terminal, return `None`
631 631 fn final_revision(&self) -> Option<Option<Revision>> {
632 632 match self.element {
633 633 Element::Block(_) => None,
634 634 Element::Rev(r) => Some(Some(r)),
635 635 Element::None => Some(None),
636 636 }
637 637 }
638 638 }
639 639
640 640 impl From<Vec<Block>> for NodeTree {
641 641 fn from(vec: Vec<Block>) -> Self {
642 642 Self::new(Box::new(vec))
643 643 }
644 644 }
645 645
646 646 impl fmt::Debug for NodeTree {
647 647 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
648 648 let readonly: &[Block] = &*self.readonly;
649 649 write!(
650 650 f,
651 651 "readonly: {:?}, growable: {:?}, root: {:?}",
652 652 readonly, self.growable, self.root
653 653 )
654 654 }
655 655 }
656 656
657 657 impl Default for NodeTree {
658 658 /// Create a fully mutable empty NodeTree
659 659 fn default() -> Self {
660 660 NodeTree::new(Box::new(Vec::new()))
661 661 }
662 662 }
663 663
664 664 impl NodeMap for NodeTree {
665 665 fn find_bin<'a>(
666 666 &self,
667 667 idx: &impl RevlogIndex,
668 668 prefix: NodePrefix,
669 669 ) -> Result<Option<Revision>, NodeMapError> {
670 670 validate_candidate(idx, prefix, self.lookup(prefix)?)
671 671 .map(|(opt, _shortest)| opt)
672 672 }
673 673
674 674 fn unique_prefix_len_bin<'a>(
675 675 &self,
676 676 idx: &impl RevlogIndex,
677 677 prefix: NodePrefix,
678 678 ) -> Result<Option<usize>, NodeMapError> {
679 679 validate_candidate(idx, prefix, self.lookup(prefix)?)
680 680 .map(|(opt, shortest)| opt.map(|_rev| shortest))
681 681 }
682 682 }
683 683
684 684 #[cfg(test)]
685 685 mod tests {
686 686 use super::NodeMapError::*;
687 687 use super::*;
688 688 use crate::revlog::node::{hex_pad_right, Node};
689 689 use std::collections::HashMap;
690 690
691 691 /// Creates a `Block` using a syntax close to the `Debug` output
692 692 macro_rules! block {
693 693 {$($nybble:tt : $variant:ident($val:tt)),*} => (
694 694 {
695 695 let mut block = Block::new();
696 696 $(block.set($nybble, Element::$variant($val)));*;
697 697 block
698 698 }
699 699 )
700 700 }
701 701
702 702 #[test]
703 703 fn test_block_debug() {
704 704 let mut block = Block::new();
705 705 block.set(1, Element::Rev(3));
706 706 block.set(10, Element::Block(0));
707 707 assert_eq!(format!("{:?}", block), "{1: Rev(3), 10: Block(0)}");
708 708 }
709 709
710 710 #[test]
711 711 fn test_block_macro() {
712 712 let block = block! {5: Block(2)};
713 713 assert_eq!(format!("{:?}", block), "{5: Block(2)}");
714 714
715 715 let block = block! {13: Rev(15), 5: Block(2)};
716 716 assert_eq!(format!("{:?}", block), "{5: Block(2), 13: Rev(15)}");
717 717 }
718 718
719 719 #[test]
720 720 fn test_raw_block() {
721 721 let mut raw = [255u8; 64];
722 722
723 723 let mut counter = 0;
724 724 for val in [0_i32, 15, -2, -1, -3].iter() {
725 725 for byte in val.to_be_bytes().iter() {
726 726 raw[counter] = *byte;
727 727 counter += 1;
728 728 }
729 729 }
730 730 let (block, _) = Block::from_bytes(&raw).unwrap();
731 731 assert_eq!(block.get(0), Element::Block(0));
732 732 assert_eq!(block.get(1), Element::Block(15));
733 733 assert_eq!(block.get(3), Element::None);
734 734 assert_eq!(block.get(2), Element::Rev(0));
735 735 assert_eq!(block.get(4), Element::Rev(1));
736 736 }
737 737
738 738 type TestIndex = HashMap<Revision, Node>;
739 739
740 740 impl RevlogIndex for TestIndex {
741 741 fn node(&self, rev: Revision) -> Option<&Node> {
742 742 self.get(&rev)
743 743 }
744 744
745 745 fn len(&self) -> usize {
746 746 self.len()
747 747 }
748 748 }
749 749
750 750 /// Pad hexadecimal Node prefix with zeros on the right
751 751 ///
752 752 /// This avoids having to repeatedly write very long hexadecimal
753 753 /// strings for test data, and brings actual hash size independency.
754 754 #[cfg(test)]
755 755 fn pad_node(hex: &str) -> Node {
756 756 Node::from_hex(&hex_pad_right(hex)).unwrap()
757 757 }
758 758
759 759 /// Pad hexadecimal Node prefix with zeros on the right, then insert
760 760 fn pad_insert(idx: &mut TestIndex, rev: Revision, hex: &str) {
761 761 idx.insert(rev, pad_node(hex));
762 762 }
763 763
764 764 fn sample_nodetree() -> NodeTree {
765 765 NodeTree::from(vec![
766 766 block![0: Rev(9)],
767 767 block![0: Rev(0), 1: Rev(9)],
768 768 block![0: Block(1), 1:Rev(1)],
769 769 ])
770 770 }
771 771
772 772 fn hex(s: &str) -> NodePrefix {
773 773 NodePrefix::from_hex(s).unwrap()
774 774 }
775 775
776 776 #[test]
777 777 fn test_nt_debug() {
778 778 let nt = sample_nodetree();
779 779 assert_eq!(
780 780 format!("{:?}", nt),
781 781 "readonly: \
782 782 [{0: Rev(9)}, {0: Rev(0), 1: Rev(9)}, {0: Block(1), 1: Rev(1)}], \
783 783 growable: [], \
784 784 root: {0: Block(1), 1: Rev(1)}",
785 785 );
786 786 }
787 787
788 788 #[test]
789 789 fn test_immutable_find_simplest() -> Result<(), NodeMapError> {
790 790 let mut idx: TestIndex = HashMap::new();
791 791 pad_insert(&mut idx, 1, "1234deadcafe");
792 792
793 793 let nt = NodeTree::from(vec![block! {1: Rev(1)}]);
794 794 assert_eq!(nt.find_bin(&idx, hex("1"))?, Some(1));
795 795 assert_eq!(nt.find_bin(&idx, hex("12"))?, Some(1));
796 796 assert_eq!(nt.find_bin(&idx, hex("1234de"))?, Some(1));
797 797 assert_eq!(nt.find_bin(&idx, hex("1a"))?, None);
798 798 assert_eq!(nt.find_bin(&idx, hex("ab"))?, None);
799 799
800 800 // and with full binary Nodes
801 801 assert_eq!(nt.find_node(&idx, idx.get(&1).unwrap())?, Some(1));
802 802 let unknown = Node::from_hex(&hex_pad_right("3d")).unwrap();
803 803 assert_eq!(nt.find_node(&idx, &unknown)?, None);
804 804 Ok(())
805 805 }
806 806
807 807 #[test]
808 808 fn test_immutable_find_one_jump() {
809 809 let mut idx = TestIndex::new();
810 810 pad_insert(&mut idx, 9, "012");
811 811 pad_insert(&mut idx, 0, "00a");
812 812
813 813 let nt = sample_nodetree();
814 814
815 815 assert_eq!(nt.find_bin(&idx, hex("0")), Err(MultipleResults));
816 816 assert_eq!(nt.find_bin(&idx, hex("01")), Ok(Some(9)));
817 817 assert_eq!(nt.find_bin(&idx, hex("00")), Err(MultipleResults));
818 818 assert_eq!(nt.find_bin(&idx, hex("00a")), Ok(Some(0)));
819 819 assert_eq!(nt.unique_prefix_len_bin(&idx, hex("00a")), Ok(Some(3)));
820 820 assert_eq!(nt.find_bin(&idx, hex("000")), Ok(Some(NULL_REVISION)));
821 821 }
822 822
823 823 #[test]
824 824 fn test_mutated_find() -> Result<(), NodeMapError> {
825 825 let mut idx = TestIndex::new();
826 826 pad_insert(&mut idx, 9, "012");
827 827 pad_insert(&mut idx, 0, "00a");
828 828 pad_insert(&mut idx, 2, "cafe");
829 829 pad_insert(&mut idx, 3, "15");
830 830 pad_insert(&mut idx, 1, "10");
831 831
832 832 let nt = NodeTree {
833 833 readonly: sample_nodetree().readonly,
834 834 growable: vec![block![0: Rev(1), 5: Rev(3)]],
835 835 root: block![0: Block(1), 1:Block(3), 12: Rev(2)],
836 836 masked_inner_blocks: 1,
837 837 };
838 838 assert_eq!(nt.find_bin(&idx, hex("10"))?, Some(1));
839 839 assert_eq!(nt.find_bin(&idx, hex("c"))?, Some(2));
840 840 assert_eq!(nt.unique_prefix_len_bin(&idx, hex("c"))?, Some(1));
841 841 assert_eq!(nt.find_bin(&idx, hex("00")), Err(MultipleResults));
842 842 assert_eq!(nt.find_bin(&idx, hex("000"))?, Some(NULL_REVISION));
843 843 assert_eq!(nt.unique_prefix_len_bin(&idx, hex("000"))?, Some(3));
844 844 assert_eq!(nt.find_bin(&idx, hex("01"))?, Some(9));
845 845 assert_eq!(nt.masked_readonly_blocks(), 2);
846 846 Ok(())
847 847 }
848 848
849 849 struct TestNtIndex {
850 850 index: TestIndex,
851 851 nt: NodeTree,
852 852 }
853 853
854 854 impl TestNtIndex {
855 855 fn new() -> Self {
856 856 TestNtIndex {
857 857 index: HashMap::new(),
858 858 nt: NodeTree::default(),
859 859 }
860 860 }
861 861
862 862 fn insert(
863 863 &mut self,
864 864 rev: Revision,
865 865 hex: &str,
866 866 ) -> Result<(), NodeMapError> {
867 867 let node = pad_node(hex);
868 868 self.index.insert(rev, node.clone());
869 869 self.nt.insert(&self.index, &node, rev)?;
870 870 Ok(())
871 871 }
872 872
873 873 fn find_hex(
874 874 &self,
875 875 prefix: &str,
876 876 ) -> Result<Option<Revision>, NodeMapError> {
877 877 self.nt.find_bin(&self.index, hex(prefix))
878 878 }
879 879
880 880 fn unique_prefix_len_hex(
881 881 &self,
882 882 prefix: &str,
883 883 ) -> Result<Option<usize>, NodeMapError> {
884 884 self.nt.unique_prefix_len_bin(&self.index, hex(prefix))
885 885 }
886 886
887 887 /// Drain `added` and restart a new one
888 888 fn commit(self) -> Self {
889 889 let mut as_vec: Vec<Block> =
890 890 self.nt.readonly.iter().map(|block| block.clone()).collect();
891 891 as_vec.extend(self.nt.growable);
892 892 as_vec.push(self.nt.root);
893 893
894 894 Self {
895 895 index: self.index,
896 896 nt: NodeTree::from(as_vec).into(),
897 897 }
898 898 }
899 899 }
900 900
901 901 #[test]
902 902 fn test_insert_full_mutable() -> Result<(), NodeMapError> {
903 903 let mut idx = TestNtIndex::new();
904 904 idx.insert(0, "1234")?;
905 905 assert_eq!(idx.find_hex("1")?, Some(0));
906 906 assert_eq!(idx.find_hex("12")?, Some(0));
907 907
908 908 // let's trigger a simple split
909 909 idx.insert(1, "1a34")?;
910 910 assert_eq!(idx.nt.growable.len(), 1);
911 911 assert_eq!(idx.find_hex("12")?, Some(0));
912 912 assert_eq!(idx.find_hex("1a")?, Some(1));
913 913
914 914 // reinserting is a no_op
915 915 idx.insert(1, "1a34")?;
916 916 assert_eq!(idx.nt.growable.len(), 1);
917 917 assert_eq!(idx.find_hex("12")?, Some(0));
918 918 assert_eq!(idx.find_hex("1a")?, Some(1));
919 919
920 920 idx.insert(2, "1a01")?;
921 921 assert_eq!(idx.nt.growable.len(), 2);
922 922 assert_eq!(idx.find_hex("1a"), Err(NodeMapError::MultipleResults));
923 923 assert_eq!(idx.find_hex("12")?, Some(0));
924 924 assert_eq!(idx.find_hex("1a3")?, Some(1));
925 925 assert_eq!(idx.find_hex("1a0")?, Some(2));
926 926 assert_eq!(idx.find_hex("1a12")?, None);
927 927
928 928 // now let's make it split and create more than one additional block
929 929 idx.insert(3, "1a345")?;
930 930 assert_eq!(idx.nt.growable.len(), 4);
931 931 assert_eq!(idx.find_hex("1a340")?, Some(1));
932 932 assert_eq!(idx.find_hex("1a345")?, Some(3));
933 933 assert_eq!(idx.find_hex("1a341")?, None);
934 934
935 935 // there's no readonly block to mask
936 936 assert_eq!(idx.nt.masked_readonly_blocks(), 0);
937 937 Ok(())
938 938 }
939 939
940 940 #[test]
941 941 fn test_unique_prefix_len_zero_prefix() {
942 942 let mut idx = TestNtIndex::new();
943 943 idx.insert(0, "00000abcd").unwrap();
944 944
945 945 assert_eq!(idx.find_hex("000"), Err(NodeMapError::MultipleResults));
946 946 // in the nodetree proper, this will be found at the first nybble
947 947 // yet the correct answer for unique_prefix_len is not 1, nor 1+1,
948 948 // but the first difference with `NULL_NODE`
949 949 assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
950 950 assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
951 951
952 952 // same with odd result
953 953 idx.insert(1, "00123").unwrap();
954 954 assert_eq!(idx.unique_prefix_len_hex("001"), Ok(Some(3)));
955 955 assert_eq!(idx.unique_prefix_len_hex("0012"), Ok(Some(3)));
956 956
957 957 // these are unchanged of course
958 958 assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
959 959 assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
960 960 }
961 961
962 962 #[test]
963 963 fn test_insert_extreme_splitting() -> Result<(), NodeMapError> {
964 964 // check that the splitting loop is long enough
965 965 let mut nt_idx = TestNtIndex::new();
966 966 let nt = &mut nt_idx.nt;
967 967 let idx = &mut nt_idx.index;
968 968
969 969 let node0_hex = hex_pad_right("444444");
970 970 let mut node1_hex = hex_pad_right("444444").clone();
971 971 node1_hex.pop();
972 972 node1_hex.push('5');
973 973 let node0 = Node::from_hex(&node0_hex).unwrap();
974 974 let node1 = Node::from_hex(&node1_hex).unwrap();
975 975
976 976 idx.insert(0, node0.clone());
977 977 nt.insert(idx, &node0, 0)?;
978 978 idx.insert(1, node1.clone());
979 979 nt.insert(idx, &node1, 1)?;
980 980
981 981 assert_eq!(nt.find_bin(idx, (&node0).into())?, Some(0));
982 982 assert_eq!(nt.find_bin(idx, (&node1).into())?, Some(1));
983 983 Ok(())
984 984 }
985 985
986 986 #[test]
987 987 fn test_insert_partly_immutable() -> Result<(), NodeMapError> {
988 988 let mut idx = TestNtIndex::new();
989 989 idx.insert(0, "1234")?;
990 990 idx.insert(1, "1235")?;
991 991 idx.insert(2, "131")?;
992 992 idx.insert(3, "cafe")?;
993 993 let mut idx = idx.commit();
994 994 assert_eq!(idx.find_hex("1234")?, Some(0));
995 995 assert_eq!(idx.find_hex("1235")?, Some(1));
996 996 assert_eq!(idx.find_hex("131")?, Some(2));
997 997 assert_eq!(idx.find_hex("cafe")?, Some(3));
998 998 // we did not add anything since init from readonly
999 999 assert_eq!(idx.nt.masked_readonly_blocks(), 0);
1000 1000
1001 1001 idx.insert(4, "123A")?;
1002 1002 assert_eq!(idx.find_hex("1234")?, Some(0));
1003 1003 assert_eq!(idx.find_hex("1235")?, Some(1));
1004 1004 assert_eq!(idx.find_hex("131")?, Some(2));
1005 1005 assert_eq!(idx.find_hex("cafe")?, Some(3));
1006 1006 assert_eq!(idx.find_hex("123A")?, Some(4));
1007 1007 // we masked blocks for all prefixes of "123", including the root
1008 1008 assert_eq!(idx.nt.masked_readonly_blocks(), 4);
1009 1009
1010 1010 eprintln!("{:?}", idx.nt);
1011 1011 idx.insert(5, "c0")?;
1012 1012 assert_eq!(idx.find_hex("cafe")?, Some(3));
1013 1013 assert_eq!(idx.find_hex("c0")?, Some(5));
1014 1014 assert_eq!(idx.find_hex("c1")?, None);
1015 1015 assert_eq!(idx.find_hex("1234")?, Some(0));
1016 1016 // inserting "c0" is just splitting the 'c' slot of the mutable root,
1017 1017 // it doesn't mask anything
1018 1018 assert_eq!(idx.nt.masked_readonly_blocks(), 4);
1019 1019
1020 1020 Ok(())
1021 1021 }
1022 1022
1023 1023 #[test]
1024 1024 fn test_invalidate_all() -> Result<(), NodeMapError> {
1025 1025 let mut idx = TestNtIndex::new();
1026 1026 idx.insert(0, "1234")?;
1027 1027 idx.insert(1, "1235")?;
1028 1028 idx.insert(2, "131")?;
1029 1029 idx.insert(3, "cafe")?;
1030 1030 let mut idx = idx.commit();
1031 1031
1032 1032 idx.nt.invalidate_all();
1033 1033
1034 1034 assert_eq!(idx.find_hex("1234")?, None);
1035 1035 assert_eq!(idx.find_hex("1235")?, None);
1036 1036 assert_eq!(idx.find_hex("131")?, None);
1037 1037 assert_eq!(idx.find_hex("cafe")?, None);
1038 1038 // all the readonly blocks have been masked, this is the
1039 1039 // conventional expected response
1040 1040 assert_eq!(idx.nt.masked_readonly_blocks(), idx.nt.readonly.len() + 1);
1041 1041 Ok(())
1042 1042 }
1043 1043
1044 1044 #[test]
1045 1045 fn test_into_added_empty() {
1046 1046 assert!(sample_nodetree().into_readonly_and_added().1.is_empty());
1047 1047 assert!(sample_nodetree()
1048 1048 .into_readonly_and_added_bytes()
1049 1049 .1
1050 1050 .is_empty());
1051 1051 }
1052 1052
1053 1053 #[test]
1054 1054 fn test_into_added_bytes() -> Result<(), NodeMapError> {
1055 1055 let mut idx = TestNtIndex::new();
1056 1056 idx.insert(0, "1234")?;
1057 1057 let mut idx = idx.commit();
1058 1058 idx.insert(4, "cafe")?;
1059 1059 let (_, bytes) = idx.nt.into_readonly_and_added_bytes();
1060 1060
1061 1061 // only the root block has been changed
1062 1062 assert_eq!(bytes.len(), size_of::<Block>());
1063 1063 // big endian for -2
1064 1064 assert_eq!(&bytes[4..2 * 4], [255, 255, 255, 254]);
1065 1065 // big endian for -6
1066 1066 assert_eq!(&bytes[12 * 4..13 * 4], [255, 255, 255, 250]);
1067 1067 Ok(())
1068 1068 }
1069 1069 }
General Comments 0
You need to be logged in to leave comments. Login now