Show More
@@ -1,1132 +1,1132 b'' | |||
|
1 | 1 | /* |
|
2 | 2 | * LibXDiff by Davide Libenzi ( File Differential Library ) |
|
3 | 3 | * Copyright (C) 2003 Davide Libenzi |
|
4 | 4 | * |
|
5 | 5 | * This library is free software; you can redistribute it and/or |
|
6 | 6 | * modify it under the terms of the GNU Lesser General Public |
|
7 | 7 | * License as published by the Free Software Foundation; either |
|
8 | 8 | * version 2.1 of the License, or (at your option) any later version. |
|
9 | 9 | * |
|
10 | 10 | * This library is distributed in the hope that it will be useful, |
|
11 | 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 | 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
13 | 13 | * Lesser General Public License for more details. |
|
14 | 14 | * |
|
15 | 15 | * You should have received a copy of the GNU Lesser General Public |
|
16 | 16 | * License along with this library; if not, see |
|
17 | 17 | * <http://www.gnu.org/licenses/>. |
|
18 | 18 | * |
|
19 | 19 | * Davide Libenzi <davidel@xmailserver.org> |
|
20 | 20 | * |
|
21 | 21 | */ |
|
22 | 22 | |
|
23 | 23 | #include "xinclude.h" |
|
24 | 24 | |
|
25 | 25 | |
|
26 | 26 | |
|
27 | 27 | #define XDL_MAX_COST_MIN 256 |
|
28 | 28 | #define XDL_HEUR_MIN_COST 256 |
|
29 | 29 | #define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1) |
|
30 | 30 | #define XDL_SNAKE_CNT 20 |
|
31 | 31 | #define XDL_K_HEUR 4 |
|
32 | 32 | |
|
33 | 33 | /* VC 2008 doesn't know about the inline keyword. */ |
|
34 | 34 | #if defined(_MSC_VER) |
|
35 | 35 | #define inline __forceinline |
|
36 | 36 | #endif |
|
37 | 37 | |
|
38 | 38 | |
|
39 | 39 | typedef struct s_xdpsplit { |
|
40 | 40 | int64_t i1, i2; |
|
41 | 41 | int min_lo, min_hi; |
|
42 | 42 | } xdpsplit_t; |
|
43 | 43 | |
|
44 | 44 | |
|
45 | 45 | |
|
46 | 46 | |
|
47 | 47 | static int64_t xdl_split(uint64_t const *ha1, int64_t off1, int64_t lim1, |
|
48 | 48 | uint64_t const *ha2, int64_t off2, int64_t lim2, |
|
49 | 49 | int64_t *kvdf, int64_t *kvdb, int need_min, xdpsplit_t *spl, |
|
50 | 50 | xdalgoenv_t *xenv); |
|
51 | 51 | static xdchange_t *xdl_add_change(xdchange_t *xscr, int64_t i1, int64_t i2, int64_t chg1, int64_t chg2); |
|
52 | 52 | |
|
53 | 53 | |
|
54 | 54 | |
|
55 | 55 | |
|
56 | 56 | |
|
57 | 57 | /* |
|
58 | 58 | * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers. |
|
59 | 59 | * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both |
|
60 | 60 | * the forward diagonal starting from (off1, off2) and the backward diagonal |
|
61 | 61 | * starting from (lim1, lim2). If the K values on the same diagonal crosses |
|
62 | 62 | * returns the furthest point of reach. We might end up having to expensive |
|
63 | 63 | * cases using this algorithm is full, so a little bit of heuristic is needed |
|
64 | 64 | * to cut the search and to return a suboptimal point. |
|
65 | 65 | */ |
|
66 | 66 | static int64_t xdl_split(uint64_t const *ha1, int64_t off1, int64_t lim1, |
|
67 | 67 | uint64_t const *ha2, int64_t off2, int64_t lim2, |
|
68 | 68 | int64_t *kvdf, int64_t *kvdb, int need_min, xdpsplit_t *spl, |
|
69 | 69 | xdalgoenv_t *xenv) { |
|
70 | 70 | int64_t dmin = off1 - lim2, dmax = lim1 - off2; |
|
71 | 71 | int64_t fmid = off1 - off2, bmid = lim1 - lim2; |
|
72 | 72 | int64_t odd = (fmid - bmid) & 1; |
|
73 | 73 | int64_t fmin = fmid, fmax = fmid; |
|
74 | 74 | int64_t bmin = bmid, bmax = bmid; |
|
75 | 75 | int64_t ec, d, i1, i2, prev1, best, dd, v, k; |
|
76 | 76 | |
|
77 | 77 | /* |
|
78 | 78 | * Set initial diagonal values for both forward and backward path. |
|
79 | 79 | */ |
|
80 | 80 | kvdf[fmid] = off1; |
|
81 | 81 | kvdb[bmid] = lim1; |
|
82 | 82 | |
|
83 | 83 | for (ec = 1;; ec++) { |
|
84 | 84 | int got_snake = 0; |
|
85 | 85 | |
|
86 | 86 | /* |
|
87 | 87 | * We need to extent the diagonal "domain" by one. If the next |
|
88 | 88 | * values exits the box boundaries we need to change it in the |
|
89 | 89 | * opposite direction because (max - min) must be a power of two. |
|
90 | 90 | * Also we initialize the external K value to -1 so that we can |
|
91 | 91 | * avoid extra conditions check inside the core loop. |
|
92 | 92 | */ |
|
93 | 93 | if (fmin > dmin) |
|
94 | 94 | kvdf[--fmin - 1] = -1; |
|
95 | 95 | else |
|
96 | 96 | ++fmin; |
|
97 | 97 | if (fmax < dmax) |
|
98 | 98 | kvdf[++fmax + 1] = -1; |
|
99 | 99 | else |
|
100 | 100 | --fmax; |
|
101 | 101 | |
|
102 | 102 | for (d = fmax; d >= fmin; d -= 2) { |
|
103 | 103 | if (kvdf[d - 1] >= kvdf[d + 1]) |
|
104 | 104 | i1 = kvdf[d - 1] + 1; |
|
105 | 105 | else |
|
106 | 106 | i1 = kvdf[d + 1]; |
|
107 | 107 | prev1 = i1; |
|
108 | 108 | i2 = i1 - d; |
|
109 | 109 | for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++); |
|
110 | 110 | if (i1 - prev1 > xenv->snake_cnt) |
|
111 | 111 | got_snake = 1; |
|
112 | 112 | kvdf[d] = i1; |
|
113 | 113 | if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) { |
|
114 | 114 | spl->i1 = i1; |
|
115 | 115 | spl->i2 = i2; |
|
116 | 116 | spl->min_lo = spl->min_hi = 1; |
|
117 | 117 | return ec; |
|
118 | 118 | } |
|
119 | 119 | } |
|
120 | 120 | |
|
121 | 121 | /* |
|
122 | 122 | * We need to extent the diagonal "domain" by one. If the next |
|
123 | 123 | * values exits the box boundaries we need to change it in the |
|
124 | 124 | * opposite direction because (max - min) must be a power of two. |
|
125 | 125 | * Also we initialize the external K value to -1 so that we can |
|
126 | 126 | * avoid extra conditions check inside the core loop. |
|
127 | 127 | */ |
|
128 | 128 | if (bmin > dmin) |
|
129 | 129 | kvdb[--bmin - 1] = XDL_LINE_MAX; |
|
130 | 130 | else |
|
131 | 131 | ++bmin; |
|
132 | 132 | if (bmax < dmax) |
|
133 | 133 | kvdb[++bmax + 1] = XDL_LINE_MAX; |
|
134 | 134 | else |
|
135 | 135 | --bmax; |
|
136 | 136 | |
|
137 | 137 | for (d = bmax; d >= bmin; d -= 2) { |
|
138 | 138 | if (kvdb[d - 1] < kvdb[d + 1]) |
|
139 | 139 | i1 = kvdb[d - 1]; |
|
140 | 140 | else |
|
141 | 141 | i1 = kvdb[d + 1] - 1; |
|
142 | 142 | prev1 = i1; |
|
143 | 143 | i2 = i1 - d; |
|
144 | 144 | for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--); |
|
145 | 145 | if (prev1 - i1 > xenv->snake_cnt) |
|
146 | 146 | got_snake = 1; |
|
147 | 147 | kvdb[d] = i1; |
|
148 | 148 | if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) { |
|
149 | 149 | spl->i1 = i1; |
|
150 | 150 | spl->i2 = i2; |
|
151 | 151 | spl->min_lo = spl->min_hi = 1; |
|
152 | 152 | return ec; |
|
153 | 153 | } |
|
154 | 154 | } |
|
155 | 155 | |
|
156 | 156 | if (need_min) |
|
157 | 157 | continue; |
|
158 | 158 | |
|
159 | 159 | /* |
|
160 | 160 | * If the edit cost is above the heuristic trigger and if |
|
161 | 161 | * we got a good snake, we sample current diagonals to see |
|
162 | 162 | * if some of the, have reached an "interesting" path. Our |
|
163 | 163 | * measure is a function of the distance from the diagonal |
|
164 | 164 | * corner (i1 + i2) penalized with the distance from the |
|
165 | 165 | * mid diagonal itself. If this value is above the current |
|
166 | 166 | * edit cost times a magic factor (XDL_K_HEUR) we consider |
|
167 | 167 | * it interesting. |
|
168 | 168 | */ |
|
169 | 169 | if (got_snake && ec > xenv->heur_min) { |
|
170 | 170 | for (best = 0, d = fmax; d >= fmin; d -= 2) { |
|
171 | 171 | dd = d > fmid ? d - fmid: fmid - d; |
|
172 | 172 | i1 = kvdf[d]; |
|
173 | 173 | i2 = i1 - d; |
|
174 | 174 | v = (i1 - off1) + (i2 - off2) - dd; |
|
175 | 175 | |
|
176 | 176 | if (v > XDL_K_HEUR * ec && v > best && |
|
177 | 177 | off1 + xenv->snake_cnt <= i1 && i1 < lim1 && |
|
178 | 178 | off2 + xenv->snake_cnt <= i2 && i2 < lim2) { |
|
179 | 179 | for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++) |
|
180 | 180 | if (k == xenv->snake_cnt) { |
|
181 | 181 | best = v; |
|
182 | 182 | spl->i1 = i1; |
|
183 | 183 | spl->i2 = i2; |
|
184 | 184 | break; |
|
185 | 185 | } |
|
186 | 186 | } |
|
187 | 187 | } |
|
188 | 188 | if (best > 0) { |
|
189 | 189 | spl->min_lo = 1; |
|
190 | 190 | spl->min_hi = 0; |
|
191 | 191 | return ec; |
|
192 | 192 | } |
|
193 | 193 | |
|
194 | 194 | for (best = 0, d = bmax; d >= bmin; d -= 2) { |
|
195 | 195 | dd = d > bmid ? d - bmid: bmid - d; |
|
196 | 196 | i1 = kvdb[d]; |
|
197 | 197 | i2 = i1 - d; |
|
198 | 198 | v = (lim1 - i1) + (lim2 - i2) - dd; |
|
199 | 199 | |
|
200 | 200 | if (v > XDL_K_HEUR * ec && v > best && |
|
201 | 201 | off1 < i1 && i1 <= lim1 - xenv->snake_cnt && |
|
202 | 202 | off2 < i2 && i2 <= lim2 - xenv->snake_cnt) { |
|
203 | 203 | for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++) |
|
204 | 204 | if (k == xenv->snake_cnt - 1) { |
|
205 | 205 | best = v; |
|
206 | 206 | spl->i1 = i1; |
|
207 | 207 | spl->i2 = i2; |
|
208 | 208 | break; |
|
209 | 209 | } |
|
210 | 210 | } |
|
211 | 211 | } |
|
212 | 212 | if (best > 0) { |
|
213 | 213 | spl->min_lo = 0; |
|
214 | 214 | spl->min_hi = 1; |
|
215 | 215 | return ec; |
|
216 | 216 | } |
|
217 | 217 | } |
|
218 | 218 | |
|
219 | 219 | /* |
|
220 | 220 | * Enough is enough. We spent too much time here and now we collect |
|
221 | 221 | * the furthest reaching path using the (i1 + i2) measure. |
|
222 | 222 | */ |
|
223 | 223 | if (ec >= xenv->mxcost) { |
|
224 | 224 | int64_t fbest, fbest1, bbest, bbest1; |
|
225 | 225 | |
|
226 | 226 | fbest = fbest1 = -1; |
|
227 | 227 | for (d = fmax; d >= fmin; d -= 2) { |
|
228 | 228 | i1 = XDL_MIN(kvdf[d], lim1); |
|
229 | 229 | i2 = i1 - d; |
|
230 | 230 | if (lim2 < i2) |
|
231 | 231 | i1 = lim2 + d, i2 = lim2; |
|
232 | 232 | if (fbest < i1 + i2) { |
|
233 | 233 | fbest = i1 + i2; |
|
234 | 234 | fbest1 = i1; |
|
235 | 235 | } |
|
236 | 236 | } |
|
237 | 237 | |
|
238 | 238 | bbest = bbest1 = XDL_LINE_MAX; |
|
239 | 239 | for (d = bmax; d >= bmin; d -= 2) { |
|
240 | 240 | i1 = XDL_MAX(off1, kvdb[d]); |
|
241 | 241 | i2 = i1 - d; |
|
242 | 242 | if (i2 < off2) |
|
243 | 243 | i1 = off2 + d, i2 = off2; |
|
244 | 244 | if (i1 + i2 < bbest) { |
|
245 | 245 | bbest = i1 + i2; |
|
246 | 246 | bbest1 = i1; |
|
247 | 247 | } |
|
248 | 248 | } |
|
249 | 249 | |
|
250 | 250 | if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) { |
|
251 | 251 | spl->i1 = fbest1; |
|
252 | 252 | spl->i2 = fbest - fbest1; |
|
253 | 253 | spl->min_lo = 1; |
|
254 | 254 | spl->min_hi = 0; |
|
255 | 255 | } else { |
|
256 | 256 | spl->i1 = bbest1; |
|
257 | 257 | spl->i2 = bbest - bbest1; |
|
258 | 258 | spl->min_lo = 0; |
|
259 | 259 | spl->min_hi = 1; |
|
260 | 260 | } |
|
261 | 261 | return ec; |
|
262 | 262 | } |
|
263 | 263 | } |
|
264 | 264 | } |
|
265 | 265 | |
|
266 | 266 | |
|
267 | 267 | /* |
|
268 | 268 | * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling |
|
269 | 269 | * the box splitting function. Note that the real job (marking changed lines) |
|
270 | 270 | * is done in the two boundary reaching checks. |
|
271 | 271 | */ |
|
272 | 272 | int xdl_recs_cmp(diffdata_t *dd1, int64_t off1, int64_t lim1, |
|
273 | 273 | diffdata_t *dd2, int64_t off2, int64_t lim2, |
|
274 | 274 | int64_t *kvdf, int64_t *kvdb, int need_min, xdalgoenv_t *xenv) { |
|
275 | 275 | uint64_t const *ha1 = dd1->ha, *ha2 = dd2->ha; |
|
276 | 276 | |
|
277 | 277 | /* |
|
278 | 278 | * Shrink the box by walking through each diagonal snake (SW and NE). |
|
279 | 279 | */ |
|
280 | 280 | for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++); |
|
281 | 281 | for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--); |
|
282 | 282 | |
|
283 | 283 | /* |
|
284 | 284 | * If one dimension is empty, then all records on the other one must |
|
285 | 285 | * be obviously changed. |
|
286 | 286 | */ |
|
287 | 287 | if (off1 == lim1) { |
|
288 | 288 | char *rchg2 = dd2->rchg; |
|
289 | 289 | int64_t *rindex2 = dd2->rindex; |
|
290 | 290 | |
|
291 | 291 | for (; off2 < lim2; off2++) |
|
292 | 292 | rchg2[rindex2[off2]] = 1; |
|
293 | 293 | } else if (off2 == lim2) { |
|
294 | 294 | char *rchg1 = dd1->rchg; |
|
295 | 295 | int64_t *rindex1 = dd1->rindex; |
|
296 | 296 | |
|
297 | 297 | for (; off1 < lim1; off1++) |
|
298 | 298 | rchg1[rindex1[off1]] = 1; |
|
299 | 299 | } else { |
|
300 | 300 | xdpsplit_t spl; |
|
301 | 301 | spl.i1 = spl.i2 = 0; |
|
302 | 302 | |
|
303 | 303 | /* |
|
304 | 304 | * Divide ... |
|
305 | 305 | */ |
|
306 | 306 | if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb, |
|
307 | 307 | need_min, &spl, xenv) < 0) { |
|
308 | 308 | |
|
309 | 309 | return -1; |
|
310 | 310 | } |
|
311 | 311 | |
|
312 | 312 | /* |
|
313 | 313 | * ... et Impera. |
|
314 | 314 | */ |
|
315 | 315 | if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2, |
|
316 | 316 | kvdf, kvdb, spl.min_lo, xenv) < 0 || |
|
317 | 317 | xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2, |
|
318 | 318 | kvdf, kvdb, spl.min_hi, xenv) < 0) { |
|
319 | 319 | |
|
320 | 320 | return -1; |
|
321 | 321 | } |
|
322 | 322 | } |
|
323 | 323 | |
|
324 | 324 | return 0; |
|
325 | 325 | } |
|
326 | 326 | |
|
327 | 327 | |
|
328 | 328 | int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, |
|
329 | 329 | xdfenv_t *xe) { |
|
330 | 330 | int64_t ndiags; |
|
331 | 331 | int64_t *kvd, *kvdf, *kvdb; |
|
332 | 332 | xdalgoenv_t xenv; |
|
333 | 333 | diffdata_t dd1, dd2; |
|
334 | 334 | |
|
335 | 335 | if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) { |
|
336 | 336 | |
|
337 | 337 | return -1; |
|
338 | 338 | } |
|
339 | 339 | |
|
340 | 340 | /* |
|
341 | 341 | * Allocate and setup K vectors to be used by the differential algorithm. |
|
342 | 342 | * One is to store the forward path and one to store the backward path. |
|
343 | 343 | */ |
|
344 | 344 | ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3; |
|
345 | 345 | if (!(kvd = (int64_t *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) { |
|
346 | 346 | |
|
347 | 347 | xdl_free_env(xe); |
|
348 | 348 | return -1; |
|
349 | 349 | } |
|
350 | 350 | kvdf = kvd; |
|
351 | 351 | kvdb = kvdf + ndiags; |
|
352 | 352 | kvdf += xe->xdf2.nreff + 1; |
|
353 | 353 | kvdb += xe->xdf2.nreff + 1; |
|
354 | 354 | |
|
355 | 355 | xenv.mxcost = xdl_bogosqrt(ndiags); |
|
356 | 356 | if (xenv.mxcost < XDL_MAX_COST_MIN) |
|
357 | 357 | xenv.mxcost = XDL_MAX_COST_MIN; |
|
358 | 358 | xenv.snake_cnt = XDL_SNAKE_CNT; |
|
359 | 359 | xenv.heur_min = XDL_HEUR_MIN_COST; |
|
360 | 360 | |
|
361 | 361 | dd1.nrec = xe->xdf1.nreff; |
|
362 | 362 | dd1.ha = xe->xdf1.ha; |
|
363 | 363 | dd1.rchg = xe->xdf1.rchg; |
|
364 | 364 | dd1.rindex = xe->xdf1.rindex; |
|
365 | 365 | dd2.nrec = xe->xdf2.nreff; |
|
366 | 366 | dd2.ha = xe->xdf2.ha; |
|
367 | 367 | dd2.rchg = xe->xdf2.rchg; |
|
368 | 368 | dd2.rindex = xe->xdf2.rindex; |
|
369 | 369 | |
|
370 | 370 | if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec, |
|
371 | 371 | kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) { |
|
372 | 372 | |
|
373 | 373 | xdl_free(kvd); |
|
374 | 374 | xdl_free_env(xe); |
|
375 | 375 | return -1; |
|
376 | 376 | } |
|
377 | 377 | |
|
378 | 378 | xdl_free(kvd); |
|
379 | 379 | |
|
380 | 380 | return 0; |
|
381 | 381 | } |
|
382 | 382 | |
|
383 | 383 | |
|
384 | 384 | static xdchange_t *xdl_add_change(xdchange_t *xscr, int64_t i1, int64_t i2, int64_t chg1, int64_t chg2) { |
|
385 | 385 | xdchange_t *xch; |
|
386 | 386 | |
|
387 | 387 | if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t)))) |
|
388 | 388 | return NULL; |
|
389 | 389 | |
|
390 | 390 | xch->next = xscr; |
|
391 | 391 | xch->i1 = i1; |
|
392 | 392 | xch->i2 = i2; |
|
393 | 393 | xch->chg1 = chg1; |
|
394 | 394 | xch->chg2 = chg2; |
|
395 | 395 | xch->ignore = 0; |
|
396 | 396 | |
|
397 | 397 | return xch; |
|
398 | 398 | } |
|
399 | 399 | |
|
400 | 400 | |
|
401 | 401 | static int recs_match(xrecord_t *rec1, xrecord_t *rec2) |
|
402 | 402 | { |
|
403 | 403 | return (rec1->ha == rec2->ha && |
|
404 | 404 | xdl_recmatch(rec1->ptr, rec1->size, |
|
405 | 405 | rec2->ptr, rec2->size)); |
|
406 | 406 | } |
|
407 | 407 | |
|
408 | 408 | /* |
|
409 | 409 | * If a line is indented more than this, get_indent() just returns this value. |
|
410 | 410 | * This avoids having to do absurd amounts of work for data that are not |
|
411 | 411 | * human-readable text, and also ensures that the output of get_indent fits within |
|
412 | 412 | * an int. |
|
413 | 413 | */ |
|
414 | 414 | #define MAX_INDENT 200 |
|
415 | 415 | |
|
416 | 416 | /* |
|
417 | 417 | * Return the amount of indentation of the specified line, treating TAB as 8 |
|
418 | 418 | * columns. Return -1 if line is empty or contains only whitespace. Clamp the |
|
419 | 419 | * output value at MAX_INDENT. |
|
420 | 420 | */ |
|
421 | 421 | static int get_indent(xrecord_t *rec) |
|
422 | 422 | { |
|
423 | 423 | int64_t i; |
|
424 | 424 | int ret = 0; |
|
425 | 425 | |
|
426 | 426 | for (i = 0; i < rec->size; i++) { |
|
427 | 427 | char c = rec->ptr[i]; |
|
428 | 428 | |
|
429 | 429 | if (!XDL_ISSPACE(c)) |
|
430 | 430 | return ret; |
|
431 | 431 | else if (c == ' ') |
|
432 | 432 | ret += 1; |
|
433 | 433 | else if (c == '\t') |
|
434 | 434 | ret += 8 - ret % 8; |
|
435 | 435 | /* ignore other whitespace characters */ |
|
436 | 436 | |
|
437 | 437 | if (ret >= MAX_INDENT) |
|
438 | 438 | return MAX_INDENT; |
|
439 | 439 | } |
|
440 | 440 | |
|
441 | 441 | /* The line contains only whitespace. */ |
|
442 | 442 | return -1; |
|
443 | 443 | } |
|
444 | 444 | |
|
445 | 445 | /* |
|
446 | 446 | * If more than this number of consecutive blank rows are found, just return this |
|
447 | 447 | * value. This avoids requiring O(N^2) work for pathological cases, and also |
|
448 | 448 | * ensures that the output of score_split fits in an int. |
|
449 | 449 | */ |
|
450 | 450 | #define MAX_BLANKS 20 |
|
451 | 451 | |
|
452 | 452 | /* Characteristics measured about a hypothetical split position. */ |
|
453 | 453 | struct split_measurement { |
|
454 | 454 | /* |
|
455 | 455 | * Is the split at the end of the file (aside from any blank lines)? |
|
456 | 456 | */ |
|
457 | 457 | int end_of_file; |
|
458 | 458 | |
|
459 | 459 | /* |
|
460 | 460 | * How much is the line immediately following the split indented (or -1 if |
|
461 | 461 | * the line is blank): |
|
462 | 462 | */ |
|
463 | 463 | int indent; |
|
464 | 464 | |
|
465 | 465 | /* |
|
466 | 466 | * How many consecutive lines above the split are blank? |
|
467 | 467 | */ |
|
468 | 468 | int pre_blank; |
|
469 | 469 | |
|
470 | 470 | /* |
|
471 | 471 | * How much is the nearest non-blank line above the split indented (or -1 |
|
472 | 472 | * if there is no such line)? |
|
473 | 473 | */ |
|
474 | 474 | int pre_indent; |
|
475 | 475 | |
|
476 | 476 | /* |
|
477 | 477 | * How many lines after the line following the split are blank? |
|
478 | 478 | */ |
|
479 | 479 | int post_blank; |
|
480 | 480 | |
|
481 | 481 | /* |
|
482 | 482 | * How much is the nearest non-blank line after the line following the |
|
483 | 483 | * split indented (or -1 if there is no such line)? |
|
484 | 484 | */ |
|
485 | 485 | int post_indent; |
|
486 | 486 | }; |
|
487 | 487 | |
|
488 | 488 | struct split_score { |
|
489 | 489 | /* The effective indent of this split (smaller is preferred). */ |
|
490 | 490 | int effective_indent; |
|
491 | 491 | |
|
492 | 492 | /* Penalty for this split (smaller is preferred). */ |
|
493 | 493 | int penalty; |
|
494 | 494 | }; |
|
495 | 495 | |
|
496 | 496 | /* |
|
497 | 497 | * Fill m with information about a hypothetical split of xdf above line split. |
|
498 | 498 | */ |
|
499 | 499 | static void measure_split(const xdfile_t *xdf, int64_t split, |
|
500 | 500 | struct split_measurement *m) |
|
501 | 501 | { |
|
502 | 502 | int64_t i; |
|
503 | 503 | |
|
504 | 504 | if (split >= xdf->nrec) { |
|
505 | 505 | m->end_of_file = 1; |
|
506 | 506 | m->indent = -1; |
|
507 | 507 | } else { |
|
508 | 508 | m->end_of_file = 0; |
|
509 | 509 | m->indent = get_indent(xdf->recs[split]); |
|
510 | 510 | } |
|
511 | 511 | |
|
512 | 512 | m->pre_blank = 0; |
|
513 | 513 | m->pre_indent = -1; |
|
514 | 514 | for (i = split - 1; i >= 0; i--) { |
|
515 | 515 | m->pre_indent = get_indent(xdf->recs[i]); |
|
516 | 516 | if (m->pre_indent != -1) |
|
517 | 517 | break; |
|
518 | 518 | m->pre_blank += 1; |
|
519 | 519 | if (m->pre_blank == MAX_BLANKS) { |
|
520 | 520 | m->pre_indent = 0; |
|
521 | 521 | break; |
|
522 | 522 | } |
|
523 | 523 | } |
|
524 | 524 | |
|
525 | 525 | m->post_blank = 0; |
|
526 | 526 | m->post_indent = -1; |
|
527 | 527 | for (i = split + 1; i < xdf->nrec; i++) { |
|
528 | 528 | m->post_indent = get_indent(xdf->recs[i]); |
|
529 | 529 | if (m->post_indent != -1) |
|
530 | 530 | break; |
|
531 | 531 | m->post_blank += 1; |
|
532 | 532 | if (m->post_blank == MAX_BLANKS) { |
|
533 | 533 | m->post_indent = 0; |
|
534 | 534 | break; |
|
535 | 535 | } |
|
536 | 536 | } |
|
537 | 537 | } |
|
538 | 538 | |
|
539 | 539 | /* |
|
540 | 540 | * The empirically-determined weight factors used by score_split() below. |
|
541 | 541 | * Larger values means that the position is a less favorable place to split. |
|
542 | 542 | * |
|
543 | 543 | * Note that scores are only ever compared against each other, so multiplying |
|
544 | 544 | * all of these weight/penalty values by the same factor wouldn't change the |
|
545 | 545 | * heuristic's behavior. Still, we need to set that arbitrary scale *somehow*. |
|
546 | 546 | * In practice, these numbers are chosen to be large enough that they can be |
|
547 | 547 | * adjusted relative to each other with sufficient precision despite using |
|
548 | 548 | * integer math. |
|
549 | 549 | */ |
|
550 | 550 | |
|
551 | 551 | /* Penalty if there are no non-blank lines before the split */ |
|
552 | 552 | #define START_OF_FILE_PENALTY 1 |
|
553 | 553 | |
|
554 | 554 | /* Penalty if there are no non-blank lines after the split */ |
|
555 | 555 | #define END_OF_FILE_PENALTY 21 |
|
556 | 556 | |
|
557 | 557 | /* Multiplier for the number of blank lines around the split */ |
|
558 | 558 | #define TOTAL_BLANK_WEIGHT (-30) |
|
559 | 559 | |
|
560 | 560 | /* Multiplier for the number of blank lines after the split */ |
|
561 | 561 | #define POST_BLANK_WEIGHT 6 |
|
562 | 562 | |
|
563 | 563 | /* |
|
564 | 564 | * Penalties applied if the line is indented more than its predecessor |
|
565 | 565 | */ |
|
566 | 566 | #define RELATIVE_INDENT_PENALTY (-4) |
|
567 | 567 | #define RELATIVE_INDENT_WITH_BLANK_PENALTY 10 |
|
568 | 568 | |
|
569 | 569 | /* |
|
570 | 570 | * Penalties applied if the line is indented less than both its predecessor and |
|
571 | 571 | * its successor |
|
572 | 572 | */ |
|
573 | 573 | #define RELATIVE_OUTDENT_PENALTY 24 |
|
574 | 574 | #define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17 |
|
575 | 575 | |
|
576 | 576 | /* |
|
577 | 577 | * Penalties applied if the line is indented less than its predecessor but not |
|
578 | 578 | * less than its successor |
|
579 | 579 | */ |
|
580 | 580 | #define RELATIVE_DEDENT_PENALTY 23 |
|
581 | 581 | #define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17 |
|
582 | 582 | |
|
583 | 583 | /* |
|
584 | 584 | * We only consider whether the sum of the effective indents for splits are |
|
585 | 585 | * less than (-1), equal to (0), or greater than (+1) each other. The resulting |
|
586 | 586 | * value is multiplied by the following weight and combined with the penalty to |
|
587 | 587 | * determine the better of two scores. |
|
588 | 588 | */ |
|
589 | 589 | #define INDENT_WEIGHT 60 |
|
590 | 590 | |
|
591 | 591 | /* |
|
592 | 592 | * Compute a badness score for the hypothetical split whose measurements are |
|
593 | 593 | * stored in m. The weight factors were determined empirically using the tools and |
|
594 | 594 | * corpus described in |
|
595 | 595 | * |
|
596 | 596 | * https://github.com/mhagger/diff-slider-tools |
|
597 | 597 | * |
|
598 | 598 | * Also see that project if you want to improve the weights based on, for example, |
|
599 | 599 | * a larger or more diverse corpus. |
|
600 | 600 | */ |
|
601 | 601 | static void score_add_split(const struct split_measurement *m, struct split_score *s) |
|
602 | 602 | { |
|
603 | 603 | /* |
|
604 | 604 | * A place to accumulate penalty factors (positive makes this index more |
|
605 | 605 | * favored): |
|
606 | 606 | */ |
|
607 | 607 | int post_blank, total_blank, indent, any_blanks; |
|
608 | 608 | |
|
609 | 609 | if (m->pre_indent == -1 && m->pre_blank == 0) |
|
610 | 610 | s->penalty += START_OF_FILE_PENALTY; |
|
611 | 611 | |
|
612 | 612 | if (m->end_of_file) |
|
613 | 613 | s->penalty += END_OF_FILE_PENALTY; |
|
614 | 614 | |
|
615 | 615 | /* |
|
616 | 616 | * Set post_blank to the number of blank lines following the split, |
|
617 | 617 | * including the line immediately after the split: |
|
618 | 618 | */ |
|
619 | 619 | post_blank = (m->indent == -1) ? 1 + m->post_blank : 0; |
|
620 | 620 | total_blank = m->pre_blank + post_blank; |
|
621 | 621 | |
|
622 | 622 | /* Penalties based on nearby blank lines: */ |
|
623 | 623 | s->penalty += TOTAL_BLANK_WEIGHT * total_blank; |
|
624 | 624 | s->penalty += POST_BLANK_WEIGHT * post_blank; |
|
625 | 625 | |
|
626 | 626 | if (m->indent != -1) |
|
627 | 627 | indent = m->indent; |
|
628 | 628 | else |
|
629 | 629 | indent = m->post_indent; |
|
630 | 630 | |
|
631 | 631 | any_blanks = (total_blank != 0); |
|
632 | 632 | |
|
633 | 633 | /* Note that the effective indent is -1 at the end of the file: */ |
|
634 | 634 | s->effective_indent += indent; |
|
635 | 635 | |
|
636 | 636 | if (indent == -1) { |
|
637 | 637 | /* No additional adjustments needed. */ |
|
638 | 638 | } else if (m->pre_indent == -1) { |
|
639 | 639 | /* No additional adjustments needed. */ |
|
640 | 640 | } else if (indent > m->pre_indent) { |
|
641 | 641 | /* |
|
642 | 642 | * The line is indented more than its predecessor. |
|
643 | 643 | */ |
|
644 | 644 | s->penalty += any_blanks ? |
|
645 | 645 | RELATIVE_INDENT_WITH_BLANK_PENALTY : |
|
646 | 646 | RELATIVE_INDENT_PENALTY; |
|
647 | 647 | } else if (indent == m->pre_indent) { |
|
648 | 648 | /* |
|
649 | 649 | * The line has the same indentation level as its predecessor. |
|
650 | 650 | * No additional adjustments needed. |
|
651 | 651 | */ |
|
652 | 652 | } else { |
|
653 | 653 | /* |
|
654 | 654 | * The line is indented less than its predecessor. It could be |
|
655 | 655 | * the block terminator of the previous block, but it could |
|
656 | 656 | * also be the start of a new block (e.g., an "else" block, or |
|
657 | 657 | * maybe the previous block didn't have a block terminator). |
|
658 | 658 | * Try to distinguish those cases based on what comes next: |
|
659 | 659 | */ |
|
660 | 660 | if (m->post_indent != -1 && m->post_indent > indent) { |
|
661 | 661 | /* |
|
662 | 662 | * The following line is indented more. So it is likely |
|
663 | 663 | * that this line is the start of a block. |
|
664 | 664 | */ |
|
665 | 665 | s->penalty += any_blanks ? |
|
666 | 666 | RELATIVE_OUTDENT_WITH_BLANK_PENALTY : |
|
667 | 667 | RELATIVE_OUTDENT_PENALTY; |
|
668 | 668 | } else { |
|
669 | 669 | /* |
|
670 | 670 | * That was probably the end of a block. |
|
671 | 671 | */ |
|
672 | 672 | s->penalty += any_blanks ? |
|
673 | 673 | RELATIVE_DEDENT_WITH_BLANK_PENALTY : |
|
674 | 674 | RELATIVE_DEDENT_PENALTY; |
|
675 | 675 | } |
|
676 | 676 | } |
|
677 | 677 | } |
|
678 | 678 | |
|
679 | 679 | static int score_cmp(struct split_score *s1, struct split_score *s2) |
|
680 | 680 | { |
|
681 | 681 | /* -1 if s1.effective_indent < s2->effective_indent, etc. */ |
|
682 | 682 | int cmp_indents = ((s1->effective_indent > s2->effective_indent) - |
|
683 | 683 | (s1->effective_indent < s2->effective_indent)); |
|
684 | 684 | |
|
685 | 685 | return INDENT_WEIGHT * cmp_indents + (s1->penalty - s2->penalty); |
|
686 | 686 | } |
|
687 | 687 | |
|
688 | 688 | /* |
|
689 | 689 | * Represent a group of changed lines in an xdfile_t (i.e., a contiguous group |
|
690 | 690 | * of lines that was inserted or deleted from the corresponding version of the |
|
691 | 691 | * file). We consider there to be such a group at the beginning of the file, at |
|
692 | 692 | * the end of the file, and between any two unchanged lines, though most such |
|
693 | 693 | * groups will usually be empty. |
|
694 | 694 | * |
|
695 | 695 | * If the first line in a group is equal to the line following the group, then |
|
696 | 696 | * the group can be slid down. Similarly, if the last line in a group is equal |
|
697 | 697 | * to the line preceding the group, then the group can be slid up. See |
|
698 | 698 | * group_slide_down() and group_slide_up(). |
|
699 | 699 | * |
|
700 | 700 | * Note that loops that are testing for changed lines in xdf->rchg do not need |
|
701 | 701 | * index bounding since the array is prepared with a zero at position -1 and N. |
|
702 | 702 | */ |
|
703 | 703 | struct xdlgroup { |
|
704 | 704 | /* |
|
705 | 705 | * The index of the first changed line in the group, or the index of |
|
706 | 706 | * the unchanged line above which the (empty) group is located. |
|
707 | 707 | */ |
|
708 | 708 | int64_t start; |
|
709 | 709 | |
|
710 | 710 | /* |
|
711 | 711 | * The index of the first unchanged line after the group. For an empty |
|
712 | 712 | * group, end is equal to start. |
|
713 | 713 | */ |
|
714 | 714 | int64_t end; |
|
715 | 715 | }; |
|
716 | 716 | |
|
717 | 717 | /* |
|
718 | 718 | * Initialize g to point at the first group in xdf. |
|
719 | 719 | */ |
|
720 | 720 | static void group_init(xdfile_t *xdf, struct xdlgroup *g) |
|
721 | 721 | { |
|
722 | 722 | g->start = g->end = 0; |
|
723 | 723 | while (xdf->rchg[g->end]) |
|
724 | 724 | g->end++; |
|
725 | 725 | } |
|
726 | 726 | |
|
727 | 727 | /* |
|
728 | 728 | * Move g to describe the next (possibly empty) group in xdf and return 0. If g |
|
729 | 729 | * is already at the end of the file, do nothing and return -1. |
|
730 | 730 | */ |
|
731 | 731 | static inline int group_next(xdfile_t *xdf, struct xdlgroup *g) |
|
732 | 732 | { |
|
733 | 733 | if (g->end == xdf->nrec) |
|
734 | 734 | return -1; |
|
735 | 735 | |
|
736 | 736 | g->start = g->end + 1; |
|
737 | 737 | for (g->end = g->start; xdf->rchg[g->end]; g->end++) |
|
738 | 738 | ; |
|
739 | 739 | |
|
740 | 740 | return 0; |
|
741 | 741 | } |
|
742 | 742 | |
|
743 | 743 | /* |
|
744 | 744 | * Move g to describe the previous (possibly empty) group in xdf and return 0. |
|
745 | 745 | * If g is already at the beginning of the file, do nothing and return -1. |
|
746 | 746 | */ |
|
747 | 747 | static inline int group_previous(xdfile_t *xdf, struct xdlgroup *g) |
|
748 | 748 | { |
|
749 | 749 | if (g->start == 0) |
|
750 | 750 | return -1; |
|
751 | 751 | |
|
752 | 752 | g->end = g->start - 1; |
|
753 | 753 | for (g->start = g->end; xdf->rchg[g->start - 1]; g->start--) |
|
754 | 754 | ; |
|
755 | 755 | |
|
756 | 756 | return 0; |
|
757 | 757 | } |
|
758 | 758 | |
|
759 | 759 | /* |
|
760 | 760 | * If g can be slid toward the end of the file, do so, and if it bumps into a |
|
761 | 761 | * following group, expand this group to include it. Return 0 on success or -1 |
|
762 | 762 | * if g cannot be slid down. |
|
763 | 763 | */ |
|
764 | 764 | static int group_slide_down(xdfile_t *xdf, struct xdlgroup *g) |
|
765 | 765 | { |
|
766 | 766 | if (g->end < xdf->nrec && |
|
767 | 767 | recs_match(xdf->recs[g->start], xdf->recs[g->end])) { |
|
768 | 768 | xdf->rchg[g->start++] = 0; |
|
769 | 769 | xdf->rchg[g->end++] = 1; |
|
770 | 770 | |
|
771 | 771 | while (xdf->rchg[g->end]) |
|
772 | 772 | g->end++; |
|
773 | 773 | |
|
774 | 774 | return 0; |
|
775 | 775 | } else { |
|
776 | 776 | return -1; |
|
777 | 777 | } |
|
778 | 778 | } |
|
779 | 779 | |
|
780 | 780 | /* |
|
781 | 781 | * If g can be slid toward the beginning of the file, do so, and if it bumps |
|
782 | 782 | * into a previous group, expand this group to include it. Return 0 on success |
|
783 | 783 | * or -1 if g cannot be slid up. |
|
784 | 784 | */ |
|
785 | 785 | static int group_slide_up(xdfile_t *xdf, struct xdlgroup *g) |
|
786 | 786 | { |
|
787 | 787 | if (g->start > 0 && |
|
788 | 788 | recs_match(xdf->recs[g->start - 1], xdf->recs[g->end - 1])) { |
|
789 | 789 | xdf->rchg[--g->start] = 1; |
|
790 | 790 | xdf->rchg[--g->end] = 0; |
|
791 | 791 | |
|
792 | 792 | while (xdf->rchg[g->start - 1]) |
|
793 | 793 | g->start--; |
|
794 | 794 | |
|
795 | 795 | return 0; |
|
796 | 796 | } else { |
|
797 | 797 | return -1; |
|
798 | 798 | } |
|
799 | 799 | } |
|
800 | 800 | |
|
801 | 801 | static void xdl_bug(const char *msg) |
|
802 | 802 | { |
|
803 | 803 | fprintf(stderr, "BUG: %s\n", msg); |
|
804 | 804 | exit(1); |
|
805 | 805 | } |
|
806 | 806 | |
|
807 | 807 | /* |
|
808 | 808 | * For indentation heuristic, skip searching for better slide position after |
|
809 | 809 | * checking MAX_BORING lines without finding an improvement. This defends the |
|
810 | 810 | * indentation heuristic logic against pathological cases. The value is not |
|
811 | 811 | * picked scientifically but should be good enough. |
|
812 | 812 | */ |
|
813 | 813 | #define MAX_BORING 100 |
|
814 | 814 | |
|
815 | 815 | /* |
|
816 | 816 | * Move back and forward change groups for a consistent and pretty diff output. |
|
817 | 817 | * This also helps in finding joinable change groups and reducing the diff |
|
818 | 818 | * size. |
|
819 | 819 | */ |
|
820 | 820 | int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, int64_t flags) { |
|
821 | 821 | struct xdlgroup g, go; |
|
822 | 822 | int64_t earliest_end, end_matching_other; |
|
823 | 823 | int64_t groupsize; |
|
824 | 824 | |
|
825 | 825 | group_init(xdf, &g); |
|
826 | 826 | group_init(xdfo, &go); |
|
827 | 827 | |
|
828 | 828 | while (1) { |
|
829 | 829 | /* If the group is empty in the to-be-compacted file, skip it: */ |
|
830 | 830 | if (g.end == g.start) |
|
831 | 831 | goto next; |
|
832 | 832 | |
|
833 | 833 | /* |
|
834 | 834 | * Now shift the change up and then down as far as possible in |
|
835 | 835 | * each direction. If it bumps into any other changes, merge them. |
|
836 | 836 | */ |
|
837 | 837 | do { |
|
838 | 838 | groupsize = g.end - g.start; |
|
839 | 839 | |
|
840 | 840 | /* |
|
841 | 841 | * Keep track of the last "end" index that causes this |
|
842 | 842 | * group to align with a group of changed lines in the |
|
843 | 843 | * other file. -1 indicates that we haven't found such |
|
844 | 844 | * a match yet: |
|
845 | 845 | */ |
|
846 | 846 | end_matching_other = -1; |
|
847 | 847 | |
|
848 | 848 | /* Shift the group backward as much as possible: */ |
|
849 | 849 | while (!group_slide_up(xdf, &g)) |
|
850 | 850 | if (group_previous(xdfo, &go)) |
|
851 | 851 | xdl_bug("group sync broken sliding up"); |
|
852 | 852 | |
|
853 | 853 | /* |
|
854 | 854 | * This is this highest that this group can be shifted. |
|
855 | 855 | * Record its end index: |
|
856 | 856 | */ |
|
857 | 857 | earliest_end = g.end; |
|
858 | 858 | |
|
859 | 859 | if (go.end > go.start) |
|
860 | 860 | end_matching_other = g.end; |
|
861 | 861 | |
|
862 | 862 | /* Now shift the group forward as far as possible: */ |
|
863 | 863 | while (1) { |
|
864 | 864 | if (group_slide_down(xdf, &g)) |
|
865 | 865 | break; |
|
866 | 866 | if (group_next(xdfo, &go)) |
|
867 | 867 | xdl_bug("group sync broken sliding down"); |
|
868 | 868 | |
|
869 | 869 | if (go.end > go.start) |
|
870 | 870 | end_matching_other = g.end; |
|
871 | 871 | } |
|
872 | 872 | } while (groupsize != g.end - g.start); |
|
873 | 873 | |
|
874 | 874 | /* |
|
875 | 875 | * If the group can be shifted, then we can possibly use this |
|
876 | 876 | * freedom to produce a more intuitive diff. |
|
877 | 877 | * |
|
878 | 878 | * The group is currently shifted as far down as possible, so the |
|
879 | 879 | * heuristics below only have to handle upwards shifts. |
|
880 | 880 | */ |
|
881 | 881 | |
|
882 | 882 | if (g.end == earliest_end) { |
|
883 | 883 | /* no shifting was possible */ |
|
884 | 884 | } else if (end_matching_other != -1) { |
|
885 | 885 | /* |
|
886 | 886 | * Move the possibly merged group of changes back to line |
|
887 | 887 | * up with the last group of changes from the other file |
|
888 | 888 | * that it can align with. |
|
889 | 889 | */ |
|
890 | 890 | while (go.end == go.start) { |
|
891 | 891 | if (group_slide_up(xdf, &g)) |
|
892 | 892 | xdl_bug("match disappeared"); |
|
893 | 893 | if (group_previous(xdfo, &go)) |
|
894 | 894 | xdl_bug("group sync broken sliding to match"); |
|
895 | 895 | } |
|
896 | 896 | } else if (flags & XDF_INDENT_HEURISTIC) { |
|
897 | 897 | /* |
|
898 | 898 | * Indent heuristic: a group of pure add/delete lines |
|
899 | 899 | * implies two splits, one between the end of the "before" |
|
900 | 900 | * context and the start of the group, and another between |
|
901 | 901 | * the end of the group and the beginning of the "after" |
|
902 | 902 | * context. Some splits are aesthetically better and some |
|
903 | 903 | * are worse. We compute a badness "score" for each split, |
|
904 | 904 | * and add the scores for the two splits to define a |
|
905 | 905 | * "score" for each position that the group can be shifted |
|
906 | 906 | * to. Then we pick the shift with the lowest score. |
|
907 | 907 | */ |
|
908 | 908 | int64_t shift, best_shift = -1; |
|
909 | 909 | struct split_score best_score; |
|
910 | 910 | |
|
911 | 911 | /* |
|
912 | 912 | * This is O(N * MAX_BLANKS) (N = shift-able lines). |
|
913 | 913 | * Even with MAX_BLANKS bounded to a small value, a |
|
914 | 914 | * large N could still make this loop take several |
|
915 | 915 | * times longer than the main diff algorithm. The |
|
916 | 916 | * "boring" value is to help cut down N to something |
|
917 | 917 | * like (MAX_BORING + groupsize). |
|
918 | 918 | * |
|
919 | 919 | * Scan from bottom to top. So we can exit the loop |
|
920 | 920 | * without compromising the assumption "for a same best |
|
921 | 921 | * score, pick the bottommost shift". |
|
922 | 922 | */ |
|
923 | 923 | int boring = 0; |
|
924 | 924 | for (shift = g.end; shift >= earliest_end; shift--) { |
|
925 | 925 | struct split_measurement m; |
|
926 | 926 | struct split_score score = {0, 0}; |
|
927 | 927 | int cmp; |
|
928 | 928 | |
|
929 | 929 | measure_split(xdf, shift, &m); |
|
930 | 930 | score_add_split(&m, &score); |
|
931 | 931 | measure_split(xdf, shift - groupsize, &m); |
|
932 | 932 | score_add_split(&m, &score); |
|
933 | 933 | |
|
934 | 934 | if (best_shift == -1) { |
|
935 | 935 | cmp = -1; |
|
936 | 936 | } else { |
|
937 | 937 | cmp = score_cmp(&score, &best_score); |
|
938 | 938 | } |
|
939 | 939 | if (cmp < 0) { |
|
940 | 940 | boring = 0; |
|
941 | 941 | best_score.effective_indent = score.effective_indent; |
|
942 | 942 | best_score.penalty = score.penalty; |
|
943 | 943 | best_shift = shift; |
|
944 | 944 | } else { |
|
945 | 945 | boring += 1; |
|
946 | 946 | if (boring >= MAX_BORING) |
|
947 | 947 | break; |
|
948 | 948 | } |
|
949 | 949 | } |
|
950 | 950 | |
|
951 | 951 | while (g.end > best_shift) { |
|
952 | 952 | if (group_slide_up(xdf, &g)) |
|
953 | 953 | xdl_bug("best shift unreached"); |
|
954 | 954 | if (group_previous(xdfo, &go)) |
|
955 | 955 | xdl_bug("group sync broken sliding to blank line"); |
|
956 | 956 | } |
|
957 | 957 | } |
|
958 | 958 | |
|
959 | 959 | next: |
|
960 | 960 | /* Move past the just-processed group: */ |
|
961 | 961 | if (group_next(xdf, &g)) |
|
962 | 962 | break; |
|
963 | 963 | if (group_next(xdfo, &go)) |
|
964 | 964 | xdl_bug("group sync broken moving to next group"); |
|
965 | 965 | } |
|
966 | 966 | |
|
967 | 967 | if (!group_next(xdfo, &go)) |
|
968 | 968 | xdl_bug("group sync broken at end of file"); |
|
969 | 969 | |
|
970 | 970 | return 0; |
|
971 | 971 | } |
|
972 | 972 | |
|
973 | 973 | |
|
974 | 974 | int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) { |
|
975 | 975 | xdchange_t *cscr = NULL, *xch; |
|
976 | 976 | char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg; |
|
977 | 977 | int64_t i1, i2, l1, l2; |
|
978 | 978 | |
|
979 | 979 | /* |
|
980 | 980 | * Trivial. Collects "groups" of changes and creates an edit script. |
|
981 | 981 | */ |
|
982 | 982 | for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--) |
|
983 | 983 | if (rchg1[i1 - 1] || rchg2[i2 - 1]) { |
|
984 | 984 | for (l1 = i1; rchg1[i1 - 1]; i1--); |
|
985 | 985 | for (l2 = i2; rchg2[i2 - 1]; i2--); |
|
986 | 986 | |
|
987 | 987 | if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) { |
|
988 | 988 | xdl_free_script(cscr); |
|
989 | 989 | return -1; |
|
990 | 990 | } |
|
991 | 991 | cscr = xch; |
|
992 | 992 | } |
|
993 | 993 | |
|
994 | 994 | *xscr = cscr; |
|
995 | 995 | |
|
996 | 996 | return 0; |
|
997 | 997 | } |
|
998 | 998 | |
|
999 | 999 | |
|
1000 | 1000 | void xdl_free_script(xdchange_t *xscr) { |
|
1001 | 1001 | xdchange_t *xch; |
|
1002 | 1002 | |
|
1003 | 1003 | while ((xch = xscr) != NULL) { |
|
1004 | 1004 | xscr = xscr->next; |
|
1005 | 1005 | xdl_free(xch); |
|
1006 | 1006 | } |
|
1007 | 1007 | } |
|
1008 | 1008 | |
|
1009 | 1009 | |
|
1010 | 1010 | /* |
|
1011 | 1011 | * Starting at the passed change atom, find the latest change atom to be included |
|
1012 | 1012 | * inside the differential hunk according to the specified configuration. |
|
1013 | 1013 | * Also advance xscr if the first changes must be discarded. |
|
1014 | 1014 | */ |
|
1015 |
xdchange_t *xdl_get_hunk(xdchange_t **xscr |
|
|
1015 | xdchange_t *xdl_get_hunk(xdchange_t **xscr) | |
|
1016 | 1016 | { |
|
1017 | 1017 | xdchange_t *xch, *xchp, *lxch; |
|
1018 | 1018 | int64_t max_common = 0; |
|
1019 | 1019 | int64_t max_ignorable = 0; |
|
1020 | 1020 | uint64_t ignored = 0; /* number of ignored blank lines */ |
|
1021 | 1021 | |
|
1022 | 1022 | /* remove ignorable changes that are too far before other changes */ |
|
1023 | 1023 | for (xchp = *xscr; xchp && xchp->ignore; xchp = xchp->next) { |
|
1024 | 1024 | xch = xchp->next; |
|
1025 | 1025 | |
|
1026 | 1026 | if (xch == NULL || |
|
1027 | 1027 | xch->i1 - (xchp->i1 + xchp->chg1) >= max_ignorable) |
|
1028 | 1028 | *xscr = xch; |
|
1029 | 1029 | } |
|
1030 | 1030 | |
|
1031 | 1031 | if (*xscr == NULL) |
|
1032 | 1032 | return NULL; |
|
1033 | 1033 | |
|
1034 | 1034 | lxch = *xscr; |
|
1035 | 1035 | |
|
1036 | 1036 | for (xchp = *xscr, xch = xchp->next; xch; xchp = xch, xch = xch->next) { |
|
1037 | 1037 | int64_t distance = xch->i1 - (xchp->i1 + xchp->chg1); |
|
1038 | 1038 | if (distance > max_common) |
|
1039 | 1039 | break; |
|
1040 | 1040 | |
|
1041 | 1041 | if (distance < max_ignorable && (!xch->ignore || lxch == xchp)) { |
|
1042 | 1042 | lxch = xch; |
|
1043 | 1043 | ignored = 0; |
|
1044 | 1044 | } else if (distance < max_ignorable && xch->ignore) { |
|
1045 | 1045 | ignored += xch->chg2; |
|
1046 | 1046 | } else if (lxch != xchp && |
|
1047 | 1047 | xch->i1 + ignored - (lxch->i1 + lxch->chg1) > max_common) { |
|
1048 | 1048 | break; |
|
1049 | 1049 | } else if (!xch->ignore) { |
|
1050 | 1050 | lxch = xch; |
|
1051 | 1051 | ignored = 0; |
|
1052 | 1052 | } else { |
|
1053 | 1053 | ignored += xch->chg2; |
|
1054 | 1054 | } |
|
1055 | 1055 | } |
|
1056 | 1056 | |
|
1057 | 1057 | return lxch; |
|
1058 | 1058 | } |
|
1059 | 1059 | |
|
1060 | 1060 | |
|
1061 | 1061 | static int xdl_call_hunk_func(xdfenv_t *xe, xdchange_t *xscr, xdemitcb_t *ecb, |
|
1062 | 1062 | xdemitconf_t const *xecfg) |
|
1063 | 1063 | { |
|
1064 | 1064 | int64_t p = xe->nprefix, s = xe->nsuffix; |
|
1065 | 1065 | xdchange_t *xch, *xche; |
|
1066 | 1066 | |
|
1067 | 1067 | if (!xecfg->hunk_func) |
|
1068 | 1068 | return -1; |
|
1069 | 1069 | |
|
1070 | 1070 | if ((xecfg->flags & XDL_EMIT_BDIFFHUNK) != 0) { |
|
1071 | 1071 | int64_t i1 = 0, i2 = 0, n1 = xe->xdf1.nrec, n2 = xe->xdf2.nrec; |
|
1072 | 1072 | for (xch = xscr; xch; xch = xche->next) { |
|
1073 |
xche = xdl_get_hunk(&xch |
|
|
1073 | xche = xdl_get_hunk(&xch); | |
|
1074 | 1074 | if (!xch) |
|
1075 | 1075 | break; |
|
1076 | 1076 | if (xch != xche) |
|
1077 | 1077 | xdl_bug("xch != xche"); |
|
1078 | 1078 | xch->i1 += p; |
|
1079 | 1079 | xch->i2 += p; |
|
1080 | 1080 | if (xch->i1 > i1 || xch->i2 > i2) { |
|
1081 | 1081 | if (xecfg->hunk_func(i1, xch->i1, i2, xch->i2, ecb->priv) < 0) |
|
1082 | 1082 | return -1; |
|
1083 | 1083 | } |
|
1084 | 1084 | i1 = xche->i1 + xche->chg1; |
|
1085 | 1085 | i2 = xche->i2 + xche->chg2; |
|
1086 | 1086 | } |
|
1087 | 1087 | if (xecfg->hunk_func(i1, n1 + p + s, i2, n2 + p + s, |
|
1088 | 1088 | ecb->priv) < 0) |
|
1089 | 1089 | return -1; |
|
1090 | 1090 | } else { |
|
1091 | 1091 | for (xch = xscr; xch; xch = xche->next) { |
|
1092 |
xche = xdl_get_hunk(&xch |
|
|
1092 | xche = xdl_get_hunk(&xch); | |
|
1093 | 1093 | if (!xch) |
|
1094 | 1094 | break; |
|
1095 | 1095 | if (xecfg->hunk_func(xch->i1 + p, |
|
1096 | 1096 | xche->i1 + xche->chg1 - xch->i1, |
|
1097 | 1097 | xch->i2 + p, |
|
1098 | 1098 | xche->i2 + xche->chg2 - xch->i2, |
|
1099 | 1099 | ecb->priv) < 0) |
|
1100 | 1100 | return -1; |
|
1101 | 1101 | } |
|
1102 | 1102 | } |
|
1103 | 1103 | return 0; |
|
1104 | 1104 | } |
|
1105 | 1105 | |
|
1106 | 1106 | int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, |
|
1107 | 1107 | xdemitconf_t const *xecfg, xdemitcb_t *ecb) { |
|
1108 | 1108 | xdchange_t *xscr; |
|
1109 | 1109 | xdfenv_t xe; |
|
1110 | 1110 | |
|
1111 | 1111 | if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) { |
|
1112 | 1112 | |
|
1113 | 1113 | return -1; |
|
1114 | 1114 | } |
|
1115 | 1115 | if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 || |
|
1116 | 1116 | xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 || |
|
1117 | 1117 | xdl_build_script(&xe, &xscr) < 0) { |
|
1118 | 1118 | |
|
1119 | 1119 | xdl_free_env(&xe); |
|
1120 | 1120 | return -1; |
|
1121 | 1121 | } |
|
1122 | 1122 | |
|
1123 | 1123 | if (xdl_call_hunk_func(&xe, xscr, ecb, xecfg) < 0) { |
|
1124 | 1124 | xdl_free_script(xscr); |
|
1125 | 1125 | xdl_free_env(&xe); |
|
1126 | 1126 | return -1; |
|
1127 | 1127 | } |
|
1128 | 1128 | xdl_free_script(xscr); |
|
1129 | 1129 | xdl_free_env(&xe); |
|
1130 | 1130 | |
|
1131 | 1131 | return 0; |
|
1132 | 1132 | } |
@@ -1,552 +1,552 b'' | |||
|
1 | 1 | /* |
|
2 | 2 | * LibXDiff by Davide Libenzi ( File Differential Library ) |
|
3 | 3 | * Copyright (C) 2003 Davide Libenzi |
|
4 | 4 | * |
|
5 | 5 | * This library is free software; you can redistribute it and/or |
|
6 | 6 | * modify it under the terms of the GNU Lesser General Public |
|
7 | 7 | * License as published by the Free Software Foundation; either |
|
8 | 8 | * version 2.1 of the License, or (at your option) any later version. |
|
9 | 9 | * |
|
10 | 10 | * This library is distributed in the hope that it will be useful, |
|
11 | 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 | 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
13 | 13 | * Lesser General Public License for more details. |
|
14 | 14 | * |
|
15 | 15 | * You should have received a copy of the GNU Lesser General Public |
|
16 | 16 | * License along with this library; if not, see |
|
17 | 17 | * <http://www.gnu.org/licenses/>. |
|
18 | 18 | * |
|
19 | 19 | * Davide Libenzi <davidel@xmailserver.org> |
|
20 | 20 | * |
|
21 | 21 | */ |
|
22 | 22 | |
|
23 | 23 | #include "xinclude.h" |
|
24 | 24 | |
|
25 | 25 | |
|
26 | 26 | #define XDL_KPDIS_RUN 4 |
|
27 | 27 | #define XDL_MAX_EQLIMIT 1024 |
|
28 | 28 | #define XDL_SIMSCAN_WINDOW 100 |
|
29 | 29 | #define XDL_GUESS_NLINES1 256 |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | typedef struct s_xdlclass { |
|
33 | 33 | struct s_xdlclass *next; |
|
34 | 34 | uint64_t ha; |
|
35 | 35 | char const *line; |
|
36 | 36 | int64_t size; |
|
37 | 37 | int64_t idx; |
|
38 | 38 | int64_t len1, len2; |
|
39 | 39 | } xdlclass_t; |
|
40 | 40 | |
|
41 | 41 | typedef struct s_xdlclassifier { |
|
42 | 42 | unsigned int hbits; |
|
43 | 43 | int64_t hsize; |
|
44 | 44 | xdlclass_t **rchash; |
|
45 | 45 | chastore_t ncha; |
|
46 | 46 | xdlclass_t **rcrecs; |
|
47 | 47 | int64_t alloc; |
|
48 | 48 | int64_t count; |
|
49 | 49 | int64_t flags; |
|
50 | 50 | } xdlclassifier_t; |
|
51 | 51 | |
|
52 | 52 | |
|
53 | 53 | |
|
54 | 54 | |
|
55 | 55 | static int xdl_init_classifier(xdlclassifier_t *cf, int64_t size, int64_t flags); |
|
56 | 56 | static void xdl_free_classifier(xdlclassifier_t *cf); |
|
57 | 57 | static int xdl_classify_record(unsigned int pass, xdlclassifier_t *cf, xrecord_t **rhash, |
|
58 | 58 | unsigned int hbits, xrecord_t *rec); |
|
59 |
static int xdl_prepare_ctx(unsigned int pass, mmfile_t *mf, int64_t narec, |
|
|
59 | static int xdl_prepare_ctx(unsigned int pass, mmfile_t *mf, int64_t narec, | |
|
60 | 60 | xdlclassifier_t *cf, xdfile_t *xdf); |
|
61 | 61 | static void xdl_free_ctx(xdfile_t *xdf); |
|
62 | 62 | static int xdl_clean_mmatch(char const *dis, int64_t i, int64_t s, int64_t e); |
|
63 | 63 | static int xdl_cleanup_records(xdlclassifier_t *cf, xdfile_t *xdf1, xdfile_t *xdf2); |
|
64 | 64 | static int xdl_trim_ends(xdfile_t *xdf1, xdfile_t *xdf2); |
|
65 | 65 | static int xdl_optimize_ctxs(xdlclassifier_t *cf, xdfile_t *xdf1, xdfile_t *xdf2); |
|
66 | 66 | |
|
67 | 67 | |
|
68 | 68 | |
|
69 | 69 | |
|
70 | 70 | static int xdl_init_classifier(xdlclassifier_t *cf, int64_t size, int64_t flags) { |
|
71 | 71 | cf->flags = flags; |
|
72 | 72 | |
|
73 | 73 | cf->hbits = xdl_hashbits((unsigned int) size); |
|
74 | 74 | cf->hsize = 1 << cf->hbits; |
|
75 | 75 | |
|
76 | 76 | if (xdl_cha_init(&cf->ncha, sizeof(xdlclass_t), size / 4 + 1) < 0) { |
|
77 | 77 | |
|
78 | 78 | return -1; |
|
79 | 79 | } |
|
80 | 80 | if (!(cf->rchash = (xdlclass_t **) xdl_malloc(cf->hsize * sizeof(xdlclass_t *)))) { |
|
81 | 81 | |
|
82 | 82 | xdl_cha_free(&cf->ncha); |
|
83 | 83 | return -1; |
|
84 | 84 | } |
|
85 | 85 | memset(cf->rchash, 0, cf->hsize * sizeof(xdlclass_t *)); |
|
86 | 86 | |
|
87 | 87 | cf->alloc = size; |
|
88 | 88 | if (!(cf->rcrecs = (xdlclass_t **) xdl_malloc(cf->alloc * sizeof(xdlclass_t *)))) { |
|
89 | 89 | |
|
90 | 90 | xdl_free(cf->rchash); |
|
91 | 91 | xdl_cha_free(&cf->ncha); |
|
92 | 92 | return -1; |
|
93 | 93 | } |
|
94 | 94 | |
|
95 | 95 | cf->count = 0; |
|
96 | 96 | |
|
97 | 97 | return 0; |
|
98 | 98 | } |
|
99 | 99 | |
|
100 | 100 | |
|
101 | 101 | static void xdl_free_classifier(xdlclassifier_t *cf) { |
|
102 | 102 | |
|
103 | 103 | xdl_free(cf->rcrecs); |
|
104 | 104 | xdl_free(cf->rchash); |
|
105 | 105 | xdl_cha_free(&cf->ncha); |
|
106 | 106 | } |
|
107 | 107 | |
|
108 | 108 | |
|
109 | 109 | static int xdl_classify_record(unsigned int pass, xdlclassifier_t *cf, xrecord_t **rhash, |
|
110 | 110 | unsigned int hbits, xrecord_t *rec) { |
|
111 | 111 | int64_t hi; |
|
112 | 112 | char const *line; |
|
113 | 113 | xdlclass_t *rcrec; |
|
114 | 114 | xdlclass_t **rcrecs; |
|
115 | 115 | |
|
116 | 116 | line = rec->ptr; |
|
117 | 117 | hi = (long) XDL_HASHLONG(rec->ha, cf->hbits); |
|
118 | 118 | for (rcrec = cf->rchash[hi]; rcrec; rcrec = rcrec->next) |
|
119 | 119 | if (rcrec->ha == rec->ha && |
|
120 | 120 | xdl_recmatch(rcrec->line, rcrec->size, |
|
121 | 121 | rec->ptr, rec->size)) |
|
122 | 122 | break; |
|
123 | 123 | |
|
124 | 124 | if (!rcrec) { |
|
125 | 125 | if (!(rcrec = xdl_cha_alloc(&cf->ncha))) { |
|
126 | 126 | |
|
127 | 127 | return -1; |
|
128 | 128 | } |
|
129 | 129 | rcrec->idx = cf->count++; |
|
130 | 130 | if (cf->count > cf->alloc) { |
|
131 | 131 | cf->alloc *= 2; |
|
132 | 132 | if (!(rcrecs = (xdlclass_t **) xdl_realloc(cf->rcrecs, cf->alloc * sizeof(xdlclass_t *)))) { |
|
133 | 133 | |
|
134 | 134 | return -1; |
|
135 | 135 | } |
|
136 | 136 | cf->rcrecs = rcrecs; |
|
137 | 137 | } |
|
138 | 138 | cf->rcrecs[rcrec->idx] = rcrec; |
|
139 | 139 | rcrec->line = line; |
|
140 | 140 | rcrec->size = rec->size; |
|
141 | 141 | rcrec->ha = rec->ha; |
|
142 | 142 | rcrec->len1 = rcrec->len2 = 0; |
|
143 | 143 | rcrec->next = cf->rchash[hi]; |
|
144 | 144 | cf->rchash[hi] = rcrec; |
|
145 | 145 | } |
|
146 | 146 | |
|
147 | 147 | (pass == 1) ? rcrec->len1++ : rcrec->len2++; |
|
148 | 148 | |
|
149 | 149 | rec->ha = (unsigned long) rcrec->idx; |
|
150 | 150 | |
|
151 | 151 | hi = (long) XDL_HASHLONG(rec->ha, hbits); |
|
152 | 152 | rec->next = rhash[hi]; |
|
153 | 153 | rhash[hi] = rec; |
|
154 | 154 | |
|
155 | 155 | return 0; |
|
156 | 156 | } |
|
157 | 157 | |
|
158 | 158 | |
|
159 | 159 | /* |
|
160 | 160 | * Trim common prefix from files. |
|
161 | 161 | * |
|
162 | 162 | * Note: trimming could affect hunk shifting. But the performance benefit |
|
163 | 163 | * outweighs the shift change. A diff result with suboptimal shifting is still |
|
164 | 164 | * valid. |
|
165 | 165 | */ |
|
166 | 166 | static void xdl_trim_files(mmfile_t *mf1, mmfile_t *mf2, int64_t reserved, |
|
167 | 167 | xdfenv_t *xe, mmfile_t *out_mf1, mmfile_t *out_mf2) { |
|
168 | 168 | mmfile_t msmall, mlarge; |
|
169 | 169 | /* prefix lines, prefix bytes, suffix lines, suffix bytes */ |
|
170 | 170 | int64_t plines = 0, pbytes = 0, slines = 0, sbytes = 0, i; |
|
171 | 171 | /* prefix char pointer for msmall and mlarge */ |
|
172 | 172 | const char *pp1, *pp2; |
|
173 | 173 | /* suffix char pointer for msmall and mlarge */ |
|
174 | 174 | const char *ps1, *ps2; |
|
175 | 175 | |
|
176 | 176 | /* reserved must >= 0 for the line boundary adjustment to work */ |
|
177 | 177 | if (reserved < 0) |
|
178 | 178 | reserved = 0; |
|
179 | 179 | |
|
180 | 180 | if (mf1->size < mf2->size) { |
|
181 | 181 | memcpy(&msmall, mf1, sizeof(mmfile_t)); |
|
182 | 182 | memcpy(&mlarge, mf2, sizeof(mmfile_t)); |
|
183 | 183 | } else { |
|
184 | 184 | memcpy(&msmall, mf2, sizeof(mmfile_t)); |
|
185 | 185 | memcpy(&mlarge, mf1, sizeof(mmfile_t)); |
|
186 | 186 | } |
|
187 | 187 | |
|
188 | 188 | pp1 = msmall.ptr, pp2 = mlarge.ptr; |
|
189 | 189 | for (i = 0; i < msmall.size && *pp1 == *pp2; ++i) { |
|
190 | 190 | plines += (*pp1 == '\n'); |
|
191 | 191 | pp1++, pp2++; |
|
192 | 192 | } |
|
193 | 193 | |
|
194 | 194 | ps1 = msmall.ptr + msmall.size - 1, ps2 = mlarge.ptr + mlarge.size - 1; |
|
195 | 195 | while (ps1 > pp1 && *ps1 == *ps2) { |
|
196 | 196 | slines += (*ps1 == '\n'); |
|
197 | 197 | ps1--, ps2--; |
|
198 | 198 | } |
|
199 | 199 | |
|
200 | 200 | /* Retract common prefix and suffix boundaries for reserved lines */ |
|
201 | 201 | if (plines <= reserved + 1) { |
|
202 | 202 | plines = 0; |
|
203 | 203 | } else { |
|
204 | 204 | i = 0; |
|
205 | 205 | while (i <= reserved) { |
|
206 | 206 | pp1--; |
|
207 | 207 | i += (*pp1 == '\n'); |
|
208 | 208 | } |
|
209 | 209 | /* The new mmfile starts at the next char just after '\n' */ |
|
210 | 210 | pbytes = pp1 - msmall.ptr + 1; |
|
211 | 211 | plines -= reserved; |
|
212 | 212 | } |
|
213 | 213 | |
|
214 | 214 | if (slines <= reserved + 1) { |
|
215 | 215 | slines = 0; |
|
216 | 216 | } else { |
|
217 | 217 | /* Note: with compiler SIMD support (ex. -O3 -mavx2), this |
|
218 | 218 | * might perform better than memchr. */ |
|
219 | 219 | i = 0; |
|
220 | 220 | while (i <= reserved) { |
|
221 | 221 | ps1++; |
|
222 | 222 | i += (*ps1 == '\n'); |
|
223 | 223 | } |
|
224 | 224 | /* The new mmfile includes this '\n' */ |
|
225 | 225 | sbytes = msmall.ptr + msmall.size - ps1 - 1; |
|
226 | 226 | slines -= reserved; |
|
227 | 227 | if (msmall.ptr[msmall.size - 1] == '\n') |
|
228 | 228 | slines -= 1; |
|
229 | 229 | } |
|
230 | 230 | |
|
231 | 231 | xe->nprefix = plines; |
|
232 | 232 | xe->nsuffix = slines; |
|
233 | 233 | out_mf1->ptr = mf1->ptr + pbytes; |
|
234 | 234 | out_mf1->size = mf1->size - pbytes - sbytes; |
|
235 | 235 | out_mf2->ptr = mf2->ptr + pbytes; |
|
236 | 236 | out_mf2->size = mf2->size - pbytes - sbytes; |
|
237 | 237 | } |
|
238 | 238 | |
|
239 | 239 | |
|
240 |
static int xdl_prepare_ctx(unsigned int pass, mmfile_t *mf, int64_t narec, |
|
|
240 | static int xdl_prepare_ctx(unsigned int pass, mmfile_t *mf, int64_t narec, | |
|
241 | 241 | xdlclassifier_t *cf, xdfile_t *xdf) { |
|
242 | 242 | unsigned int hbits; |
|
243 | 243 | int64_t nrec, hsize, bsize; |
|
244 | 244 | uint64_t hav; |
|
245 | 245 | char const *blk, *cur, *top, *prev; |
|
246 | 246 | xrecord_t *crec; |
|
247 | 247 | xrecord_t **recs, **rrecs; |
|
248 | 248 | xrecord_t **rhash; |
|
249 | 249 | uint64_t *ha; |
|
250 | 250 | char *rchg; |
|
251 | 251 | int64_t *rindex; |
|
252 | 252 | |
|
253 | 253 | ha = NULL; |
|
254 | 254 | rindex = NULL; |
|
255 | 255 | rchg = NULL; |
|
256 | 256 | rhash = NULL; |
|
257 | 257 | recs = NULL; |
|
258 | 258 | |
|
259 | 259 | if (xdl_cha_init(&xdf->rcha, sizeof(xrecord_t), narec / 4 + 1) < 0) |
|
260 | 260 | goto abort; |
|
261 | 261 | if (!(recs = (xrecord_t **) xdl_malloc(narec * sizeof(xrecord_t *)))) |
|
262 | 262 | goto abort; |
|
263 | 263 | |
|
264 | 264 | { |
|
265 | 265 | hbits = xdl_hashbits((unsigned int) narec); |
|
266 | 266 | hsize = 1 << hbits; |
|
267 | 267 | if (!(rhash = (xrecord_t **) xdl_malloc(hsize * sizeof(xrecord_t *)))) |
|
268 | 268 | goto abort; |
|
269 | 269 | memset(rhash, 0, hsize * sizeof(xrecord_t *)); |
|
270 | 270 | } |
|
271 | 271 | |
|
272 | 272 | nrec = 0; |
|
273 | 273 | if ((cur = blk = xdl_mmfile_first(mf, &bsize)) != NULL) { |
|
274 | 274 | for (top = blk + bsize; cur < top; ) { |
|
275 | 275 | prev = cur; |
|
276 | 276 | hav = xdl_hash_record(&cur, top); |
|
277 | 277 | if (nrec >= narec) { |
|
278 | 278 | narec *= 2; |
|
279 | 279 | if (!(rrecs = (xrecord_t **) xdl_realloc(recs, narec * sizeof(xrecord_t *)))) |
|
280 | 280 | goto abort; |
|
281 | 281 | recs = rrecs; |
|
282 | 282 | } |
|
283 | 283 | if (!(crec = xdl_cha_alloc(&xdf->rcha))) |
|
284 | 284 | goto abort; |
|
285 | 285 | crec->ptr = prev; |
|
286 | 286 | crec->size = (long) (cur - prev); |
|
287 | 287 | crec->ha = hav; |
|
288 | 288 | recs[nrec++] = crec; |
|
289 | 289 | |
|
290 | 290 | if (xdl_classify_record(pass, cf, rhash, hbits, crec) < 0) |
|
291 | 291 | goto abort; |
|
292 | 292 | } |
|
293 | 293 | } |
|
294 | 294 | |
|
295 | 295 | if (!(rchg = (char *) xdl_malloc((nrec + 2) * sizeof(char)))) |
|
296 | 296 | goto abort; |
|
297 | 297 | memset(rchg, 0, (nrec + 2) * sizeof(char)); |
|
298 | 298 | |
|
299 | 299 | if (!(rindex = (int64_t *) xdl_malloc((nrec + 1) * sizeof(long)))) |
|
300 | 300 | goto abort; |
|
301 | 301 | if (!(ha = (uint64_t *) xdl_malloc((nrec + 1) * sizeof(unsigned long)))) |
|
302 | 302 | goto abort; |
|
303 | 303 | |
|
304 | 304 | xdf->nrec = nrec; |
|
305 | 305 | xdf->recs = recs; |
|
306 | 306 | xdf->hbits = hbits; |
|
307 | 307 | xdf->rhash = rhash; |
|
308 | 308 | xdf->rchg = rchg + 1; |
|
309 | 309 | xdf->rindex = rindex; |
|
310 | 310 | xdf->nreff = 0; |
|
311 | 311 | xdf->ha = ha; |
|
312 | 312 | xdf->dstart = 0; |
|
313 | 313 | xdf->dend = nrec - 1; |
|
314 | 314 | |
|
315 | 315 | return 0; |
|
316 | 316 | |
|
317 | 317 | abort: |
|
318 | 318 | xdl_free(ha); |
|
319 | 319 | xdl_free(rindex); |
|
320 | 320 | xdl_free(rchg); |
|
321 | 321 | xdl_free(rhash); |
|
322 | 322 | xdl_free(recs); |
|
323 | 323 | xdl_cha_free(&xdf->rcha); |
|
324 | 324 | return -1; |
|
325 | 325 | } |
|
326 | 326 | |
|
327 | 327 | |
|
328 | 328 | static void xdl_free_ctx(xdfile_t *xdf) { |
|
329 | 329 | |
|
330 | 330 | xdl_free(xdf->rhash); |
|
331 | 331 | xdl_free(xdf->rindex); |
|
332 | 332 | xdl_free(xdf->rchg - 1); |
|
333 | 333 | xdl_free(xdf->ha); |
|
334 | 334 | xdl_free(xdf->recs); |
|
335 | 335 | xdl_cha_free(&xdf->rcha); |
|
336 | 336 | } |
|
337 | 337 | |
|
338 | 338 | /* Reserved lines for trimming, to leave room for shifting */ |
|
339 | 339 | #define TRIM_RESERVED_LINES 100 |
|
340 | 340 | |
|
341 | 341 | int xdl_prepare_env(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, |
|
342 | 342 | xdfenv_t *xe) { |
|
343 | 343 | int64_t enl1, enl2, sample; |
|
344 | 344 | mmfile_t tmf1, tmf2; |
|
345 | 345 | xdlclassifier_t cf; |
|
346 | 346 | |
|
347 | 347 | memset(&cf, 0, sizeof(cf)); |
|
348 | 348 | |
|
349 | 349 | sample = XDL_GUESS_NLINES1; |
|
350 | 350 | |
|
351 | 351 | enl1 = xdl_guess_lines(mf1, sample) + 1; |
|
352 | 352 | enl2 = xdl_guess_lines(mf2, sample) + 1; |
|
353 | 353 | |
|
354 | 354 | if (xdl_init_classifier(&cf, enl1 + enl2 + 1, xpp->flags) < 0) |
|
355 | 355 | return -1; |
|
356 | 356 | |
|
357 | 357 | xdl_trim_files(mf1, mf2, TRIM_RESERVED_LINES, xe, &tmf1, &tmf2); |
|
358 | 358 | |
|
359 |
if (xdl_prepare_ctx(1, &tmf1, enl1 |
|
|
359 | if (xdl_prepare_ctx(1, &tmf1, enl1, &cf, &xe->xdf1) < 0) { | |
|
360 | 360 | |
|
361 | 361 | xdl_free_classifier(&cf); |
|
362 | 362 | return -1; |
|
363 | 363 | } |
|
364 |
if (xdl_prepare_ctx(2, &tmf2, enl2 |
|
|
364 | if (xdl_prepare_ctx(2, &tmf2, enl2, &cf, &xe->xdf2) < 0) { | |
|
365 | 365 | |
|
366 | 366 | xdl_free_ctx(&xe->xdf1); |
|
367 | 367 | xdl_free_classifier(&cf); |
|
368 | 368 | return -1; |
|
369 | 369 | } |
|
370 | 370 | |
|
371 | 371 | if (xdl_optimize_ctxs(&cf, &xe->xdf1, &xe->xdf2) < 0) { |
|
372 | 372 | xdl_free_ctx(&xe->xdf2); |
|
373 | 373 | xdl_free_ctx(&xe->xdf1); |
|
374 | 374 | xdl_free_classifier(&cf); |
|
375 | 375 | return -1; |
|
376 | 376 | } |
|
377 | 377 | |
|
378 | 378 | xdl_free_classifier(&cf); |
|
379 | 379 | |
|
380 | 380 | return 0; |
|
381 | 381 | } |
|
382 | 382 | |
|
383 | 383 | |
|
384 | 384 | void xdl_free_env(xdfenv_t *xe) { |
|
385 | 385 | |
|
386 | 386 | xdl_free_ctx(&xe->xdf2); |
|
387 | 387 | xdl_free_ctx(&xe->xdf1); |
|
388 | 388 | } |
|
389 | 389 | |
|
390 | 390 | |
|
391 | 391 | static int xdl_clean_mmatch(char const *dis, int64_t i, int64_t s, int64_t e) { |
|
392 | 392 | int64_t r, rdis0, rpdis0, rdis1, rpdis1; |
|
393 | 393 | |
|
394 | 394 | /* |
|
395 | 395 | * Limits the window the is examined during the similar-lines |
|
396 | 396 | * scan. The loops below stops when dis[i - r] == 1 (line that |
|
397 | 397 | * has no match), but there are corner cases where the loop |
|
398 | 398 | * proceed all the way to the extremities by causing huge |
|
399 | 399 | * performance penalties in case of big files. |
|
400 | 400 | */ |
|
401 | 401 | if (i - s > XDL_SIMSCAN_WINDOW) |
|
402 | 402 | s = i - XDL_SIMSCAN_WINDOW; |
|
403 | 403 | if (e - i > XDL_SIMSCAN_WINDOW) |
|
404 | 404 | e = i + XDL_SIMSCAN_WINDOW; |
|
405 | 405 | |
|
406 | 406 | /* |
|
407 | 407 | * Scans the lines before 'i' to find a run of lines that either |
|
408 | 408 | * have no match (dis[j] == 0) or have multiple matches (dis[j] > 1). |
|
409 | 409 | * Note that we always call this function with dis[i] > 1, so the |
|
410 | 410 | * current line (i) is already a multimatch line. |
|
411 | 411 | */ |
|
412 | 412 | for (r = 1, rdis0 = 0, rpdis0 = 1; (i - r) >= s; r++) { |
|
413 | 413 | if (!dis[i - r]) |
|
414 | 414 | rdis0++; |
|
415 | 415 | else if (dis[i - r] == 2) |
|
416 | 416 | rpdis0++; |
|
417 | 417 | else |
|
418 | 418 | break; |
|
419 | 419 | } |
|
420 | 420 | /* |
|
421 | 421 | * If the run before the line 'i' found only multimatch lines, we |
|
422 | 422 | * return 0 and hence we don't make the current line (i) discarded. |
|
423 | 423 | * We want to discard multimatch lines only when they appear in the |
|
424 | 424 | * middle of runs with nomatch lines (dis[j] == 0). |
|
425 | 425 | */ |
|
426 | 426 | if (rdis0 == 0) |
|
427 | 427 | return 0; |
|
428 | 428 | for (r = 1, rdis1 = 0, rpdis1 = 1; (i + r) <= e; r++) { |
|
429 | 429 | if (!dis[i + r]) |
|
430 | 430 | rdis1++; |
|
431 | 431 | else if (dis[i + r] == 2) |
|
432 | 432 | rpdis1++; |
|
433 | 433 | else |
|
434 | 434 | break; |
|
435 | 435 | } |
|
436 | 436 | /* |
|
437 | 437 | * If the run after the line 'i' found only multimatch lines, we |
|
438 | 438 | * return 0 and hence we don't make the current line (i) discarded. |
|
439 | 439 | */ |
|
440 | 440 | if (rdis1 == 0) |
|
441 | 441 | return 0; |
|
442 | 442 | rdis1 += rdis0; |
|
443 | 443 | rpdis1 += rpdis0; |
|
444 | 444 | |
|
445 | 445 | return rpdis1 * XDL_KPDIS_RUN < (rpdis1 + rdis1); |
|
446 | 446 | } |
|
447 | 447 | |
|
448 | 448 | |
|
449 | 449 | /* |
|
450 | 450 | * Try to reduce the problem complexity, discard records that have no |
|
451 | 451 | * matches on the other file. Also, lines that have multiple matches |
|
452 | 452 | * might be potentially discarded if they happear in a run of discardable. |
|
453 | 453 | */ |
|
454 | 454 | static int xdl_cleanup_records(xdlclassifier_t *cf, xdfile_t *xdf1, xdfile_t *xdf2) { |
|
455 | 455 | int64_t i, nm, nreff, mlim; |
|
456 | 456 | xrecord_t **recs; |
|
457 | 457 | xdlclass_t *rcrec; |
|
458 | 458 | char *dis, *dis1, *dis2; |
|
459 | 459 | |
|
460 | 460 | if (!(dis = (char *) xdl_malloc(xdf1->nrec + xdf2->nrec + 2))) { |
|
461 | 461 | |
|
462 | 462 | return -1; |
|
463 | 463 | } |
|
464 | 464 | memset(dis, 0, xdf1->nrec + xdf2->nrec + 2); |
|
465 | 465 | dis1 = dis; |
|
466 | 466 | dis2 = dis1 + xdf1->nrec + 1; |
|
467 | 467 | |
|
468 | 468 | if ((mlim = xdl_bogosqrt(xdf1->nrec)) > XDL_MAX_EQLIMIT) |
|
469 | 469 | mlim = XDL_MAX_EQLIMIT; |
|
470 | 470 | for (i = xdf1->dstart, recs = &xdf1->recs[xdf1->dstart]; i <= xdf1->dend; i++, recs++) { |
|
471 | 471 | rcrec = cf->rcrecs[(*recs)->ha]; |
|
472 | 472 | nm = rcrec ? rcrec->len2 : 0; |
|
473 | 473 | dis1[i] = (nm == 0) ? 0: (nm >= mlim) ? 2: 1; |
|
474 | 474 | } |
|
475 | 475 | |
|
476 | 476 | if ((mlim = xdl_bogosqrt(xdf2->nrec)) > XDL_MAX_EQLIMIT) |
|
477 | 477 | mlim = XDL_MAX_EQLIMIT; |
|
478 | 478 | for (i = xdf2->dstart, recs = &xdf2->recs[xdf2->dstart]; i <= xdf2->dend; i++, recs++) { |
|
479 | 479 | rcrec = cf->rcrecs[(*recs)->ha]; |
|
480 | 480 | nm = rcrec ? rcrec->len1 : 0; |
|
481 | 481 | dis2[i] = (nm == 0) ? 0: (nm >= mlim) ? 2: 1; |
|
482 | 482 | } |
|
483 | 483 | |
|
484 | 484 | for (nreff = 0, i = xdf1->dstart, recs = &xdf1->recs[xdf1->dstart]; |
|
485 | 485 | i <= xdf1->dend; i++, recs++) { |
|
486 | 486 | if (dis1[i] == 1 || |
|
487 | 487 | (dis1[i] == 2 && !xdl_clean_mmatch(dis1, i, xdf1->dstart, xdf1->dend))) { |
|
488 | 488 | xdf1->rindex[nreff] = i; |
|
489 | 489 | xdf1->ha[nreff] = (*recs)->ha; |
|
490 | 490 | nreff++; |
|
491 | 491 | } else |
|
492 | 492 | xdf1->rchg[i] = 1; |
|
493 | 493 | } |
|
494 | 494 | xdf1->nreff = nreff; |
|
495 | 495 | |
|
496 | 496 | for (nreff = 0, i = xdf2->dstart, recs = &xdf2->recs[xdf2->dstart]; |
|
497 | 497 | i <= xdf2->dend; i++, recs++) { |
|
498 | 498 | if (dis2[i] == 1 || |
|
499 | 499 | (dis2[i] == 2 && !xdl_clean_mmatch(dis2, i, xdf2->dstart, xdf2->dend))) { |
|
500 | 500 | xdf2->rindex[nreff] = i; |
|
501 | 501 | xdf2->ha[nreff] = (*recs)->ha; |
|
502 | 502 | nreff++; |
|
503 | 503 | } else |
|
504 | 504 | xdf2->rchg[i] = 1; |
|
505 | 505 | } |
|
506 | 506 | xdf2->nreff = nreff; |
|
507 | 507 | |
|
508 | 508 | xdl_free(dis); |
|
509 | 509 | |
|
510 | 510 | return 0; |
|
511 | 511 | } |
|
512 | 512 | |
|
513 | 513 | |
|
514 | 514 | /* |
|
515 | 515 | * Early trim initial and terminal matching records. |
|
516 | 516 | */ |
|
517 | 517 | static int xdl_trim_ends(xdfile_t *xdf1, xdfile_t *xdf2) { |
|
518 | 518 | int64_t i, lim; |
|
519 | 519 | xrecord_t **recs1, **recs2; |
|
520 | 520 | |
|
521 | 521 | recs1 = xdf1->recs; |
|
522 | 522 | recs2 = xdf2->recs; |
|
523 | 523 | for (i = 0, lim = XDL_MIN(xdf1->nrec, xdf2->nrec); i < lim; |
|
524 | 524 | i++, recs1++, recs2++) |
|
525 | 525 | if ((*recs1)->ha != (*recs2)->ha) |
|
526 | 526 | break; |
|
527 | 527 | |
|
528 | 528 | xdf1->dstart = xdf2->dstart = i; |
|
529 | 529 | |
|
530 | 530 | recs1 = xdf1->recs + xdf1->nrec - 1; |
|
531 | 531 | recs2 = xdf2->recs + xdf2->nrec - 1; |
|
532 | 532 | for (lim -= i, i = 0; i < lim; i++, recs1--, recs2--) |
|
533 | 533 | if ((*recs1)->ha != (*recs2)->ha) |
|
534 | 534 | break; |
|
535 | 535 | |
|
536 | 536 | xdf1->dend = xdf1->nrec - i - 1; |
|
537 | 537 | xdf2->dend = xdf2->nrec - i - 1; |
|
538 | 538 | |
|
539 | 539 | return 0; |
|
540 | 540 | } |
|
541 | 541 | |
|
542 | 542 | |
|
543 | 543 | static int xdl_optimize_ctxs(xdlclassifier_t *cf, xdfile_t *xdf1, xdfile_t *xdf2) { |
|
544 | 544 | |
|
545 | 545 | if (xdl_trim_ends(xdf1, xdf2) < 0 || |
|
546 | 546 | xdl_cleanup_records(cf, xdf1, xdf2) < 0) { |
|
547 | 547 | |
|
548 | 548 | return -1; |
|
549 | 549 | } |
|
550 | 550 | |
|
551 | 551 | return 0; |
|
552 | 552 | } |
General Comments 0
You need to be logged in to leave comments.
Login now