##// END OF EJS Templates
hgweb: remove support for POST form data (BC)...
hgweb: remove support for POST form data (BC) Previously, we called out to cgi.parse(), which for POST requests parsed multipart/form-data and application/x-www-form-urlencoded Content-Type requests for form data, combined it with query string parameters, returned a union of the values. As far as I know, nothing in Mercurial actually uses this mechanism to submit data to the HTTP server. The wire protocol has its own mechanism for passing parameters. And the web interface only does GET requests. Removing support for parsing POST data doesn't break any tests. Another reason to not like this feature is that cgi.parse() may modify the QUERY_STRING environment variable as a side-effect. In addition, it merges both POST data and the query string into one data structure. This prevents consumers from knowing whether a variable came from the query string or POST data. That can matter for some operations. I suspect we use cgi.parse() because back when this code was initially implemented, it was the function that was readily available. In other words, I don't think there was conscious choice to support POST data: we just got it because cgi.parse() supported it. Since nothing uses the feature and it is untested, let's remove support for parsing POST form data. We can add it back in easily enough if we need it in the future. .. bc:: Hgweb no longer reads form data in POST requests from multipart/form-data and application/x-www-form-urlencoded requests. Arguments should be specified as URL path components or in the query string in the URL instead. Differential Revision: https://phab.mercurial-scm.org/D2774

File last commit:

r34398:765eb17a default
r36874:01f6bba6 default
Show More
_funcs.py
212 lines | 7.7 KiB | text/x-python | PythonLexer
from __future__ import absolute_import, division, print_function
import copy
from ._compat import iteritems
from ._make import NOTHING, fields, _obj_setattr
from .exceptions import AttrsAttributeNotFoundError
def asdict(inst, recurse=True, filter=None, dict_factory=dict,
retain_collection_types=False):
"""
Return the ``attrs`` attribute values of *inst* as a dict.
Optionally recurse into other ``attrs``-decorated classes.
:param inst: Instance of an ``attrs``-decorated class.
:param bool recurse: Recurse into classes that are also
``attrs``-decorated.
:param callable filter: A callable whose return code deteremines whether an
attribute or element is included (``True``) or dropped (``False``). Is
called with the :class:`attr.Attribute` as the first argument and the
value as the second argument.
:param callable dict_factory: A callable to produce dictionaries from. For
example, to produce ordered dictionaries instead of normal Python
dictionaries, pass in ``collections.OrderedDict``.
:param bool retain_collection_types: Do not convert to ``list`` when
encountering an attribute whose type is ``tuple`` or ``set``. Only
meaningful if ``recurse`` is ``True``.
:rtype: return type of *dict_factory*
:raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs``
class.
.. versionadded:: 16.0.0 *dict_factory*
.. versionadded:: 16.1.0 *retain_collection_types*
"""
attrs = fields(inst.__class__)
rv = dict_factory()
for a in attrs:
v = getattr(inst, a.name)
if filter is not None and not filter(a, v):
continue
if recurse is True:
if has(v.__class__):
rv[a.name] = asdict(v, recurse=True, filter=filter,
dict_factory=dict_factory)
elif isinstance(v, (tuple, list, set)):
cf = v.__class__ if retain_collection_types is True else list
rv[a.name] = cf([
asdict(i, recurse=True, filter=filter,
dict_factory=dict_factory)
if has(i.__class__) else i
for i in v
])
elif isinstance(v, dict):
df = dict_factory
rv[a.name] = df((
asdict(kk, dict_factory=df) if has(kk.__class__) else kk,
asdict(vv, dict_factory=df) if has(vv.__class__) else vv)
for kk, vv in iteritems(v))
else:
rv[a.name] = v
else:
rv[a.name] = v
return rv
def astuple(inst, recurse=True, filter=None, tuple_factory=tuple,
retain_collection_types=False):
"""
Return the ``attrs`` attribute values of *inst* as a tuple.
Optionally recurse into other ``attrs``-decorated classes.
:param inst: Instance of an ``attrs``-decorated class.
:param bool recurse: Recurse into classes that are also
``attrs``-decorated.
:param callable filter: A callable whose return code determines whether an
attribute or element is included (``True``) or dropped (``False``). Is
called with the :class:`attr.Attribute` as the first argument and the
value as the second argument.
:param callable tuple_factory: A callable to produce tuples from. For
example, to produce lists instead of tuples.
:param bool retain_collection_types: Do not convert to ``list``
or ``dict`` when encountering an attribute which type is
``tuple``, ``dict`` or ``set``. Only meaningful if ``recurse`` is
``True``.
:rtype: return type of *tuple_factory*
:raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs``
class.
.. versionadded:: 16.2.0
"""
attrs = fields(inst.__class__)
rv = []
retain = retain_collection_types # Very long. :/
for a in attrs:
v = getattr(inst, a.name)
if filter is not None and not filter(a, v):
continue
if recurse is True:
if has(v.__class__):
rv.append(astuple(v, recurse=True, filter=filter,
tuple_factory=tuple_factory,
retain_collection_types=retain))
elif isinstance(v, (tuple, list, set)):
cf = v.__class__ if retain is True else list
rv.append(cf([
astuple(j, recurse=True, filter=filter,
tuple_factory=tuple_factory,
retain_collection_types=retain)
if has(j.__class__) else j
for j in v
]))
elif isinstance(v, dict):
df = v.__class__ if retain is True else dict
rv.append(df(
(
astuple(
kk,
tuple_factory=tuple_factory,
retain_collection_types=retain
) if has(kk.__class__) else kk,
astuple(
vv,
tuple_factory=tuple_factory,
retain_collection_types=retain
) if has(vv.__class__) else vv
)
for kk, vv in iteritems(v)))
else:
rv.append(v)
else:
rv.append(v)
return rv if tuple_factory is list else tuple_factory(rv)
def has(cls):
"""
Check whether *cls* is a class with ``attrs`` attributes.
:param type cls: Class to introspect.
:raise TypeError: If *cls* is not a class.
:rtype: :class:`bool`
"""
return getattr(cls, "__attrs_attrs__", None) is not None
def assoc(inst, **changes):
"""
Copy *inst* and apply *changes*.
:param inst: Instance of a class with ``attrs`` attributes.
:param changes: Keyword changes in the new copy.
:return: A copy of inst with *changes* incorporated.
:raise attr.exceptions.AttrsAttributeNotFoundError: If *attr_name* couldn't
be found on *cls*.
:raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs``
class.
.. deprecated:: 17.1.0
Use :func:`evolve` instead.
"""
import warnings
warnings.warn("assoc is deprecated and will be removed after 2018/01.",
DeprecationWarning)
new = copy.copy(inst)
attrs = fields(inst.__class__)
for k, v in iteritems(changes):
a = getattr(attrs, k, NOTHING)
if a is NOTHING:
raise AttrsAttributeNotFoundError(
"{k} is not an attrs attribute on {cl}."
.format(k=k, cl=new.__class__)
)
_obj_setattr(new, k, v)
return new
def evolve(inst, **changes):
"""
Create a new instance, based on *inst* with *changes* applied.
:param inst: Instance of a class with ``attrs`` attributes.
:param changes: Keyword changes in the new copy.
:return: A copy of inst with *changes* incorporated.
:raise TypeError: If *attr_name* couldn't be found in the class
``__init__``.
:raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs``
class.
.. versionadded:: 17.1.0
"""
cls = inst.__class__
attrs = fields(cls)
for a in attrs:
if not a.init:
continue
attr_name = a.name # To deal with private attributes.
init_name = attr_name if attr_name[0] != "_" else attr_name[1:]
if init_name not in changes:
changes[init_name] = getattr(inst, attr_name)
return cls(**changes)