##// END OF EJS Templates
split: new extension to split changesets...
split: new extension to split changesets This diff introduces an experimental split extension to split changesets. The implementation is largely inspired by Laurent Charignon's implementation for mutable-history (changeset 9603aa1ecdfd54b0d86e262318a72e0a2ffeb6cc [1]) This version contains various improvements: - Rebase by default. This is more friendly for new users. Split won't lead to merge conflicts so a rebase won't give the user more trouble. This has been on by default at Facebook for months now and seems to be a good UX improvement. The rebase skips obsoleted or orphaned changesets, which can avoid issues like allowdivergence, merge conflicts, etc. This is more flexible because the user can decide what to do next (see the last test case in test-split.t) - Remove "Done split? [y/n]" prompt. That could be detected by checking `repo.status()` instead. - Works with obsstore disabled. Without obsstore, split uses strip to clean up old nodes, and it can even handle split a non-head changeset with "allowunstable" disabled, since it runs a rebase to solve the "unstable" issue in a same transaction. - More friendly editor text. Put what has been already split into the editor text so users won't lost track about where they are. [1]: https://bitbucket.org/marmoute/mutable-history/commits/9603aa1ecdfd54b Differential Revision: https://phab.mercurial-scm.org/D1082

File last commit:

r34398:765eb17a default
r35471:02ea370c @7 default
Show More
_compat.py
90 lines | 2.8 KiB | text/x-python | PythonLexer
from __future__ import absolute_import, division, print_function
import sys
import types
PY2 = sys.version_info[0] == 2
if PY2:
from UserDict import IterableUserDict
# We 'bundle' isclass instead of using inspect as importing inspect is
# fairly expensive (order of 10-15 ms for a modern machine in 2016)
def isclass(klass):
return isinstance(klass, (type, types.ClassType))
# TYPE is used in exceptions, repr(int) is different on Python 2 and 3.
TYPE = "type"
def iteritems(d):
return d.iteritems()
def iterkeys(d):
return d.iterkeys()
# Python 2 is bereft of a read-only dict proxy, so we make one!
class ReadOnlyDict(IterableUserDict):
"""
Best-effort read-only dict wrapper.
"""
def __setitem__(self, key, val):
# We gently pretend we're a Python 3 mappingproxy.
raise TypeError("'mappingproxy' object does not support item "
"assignment")
def update(self, _):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'update'")
def __delitem__(self, _):
# We gently pretend we're a Python 3 mappingproxy.
raise TypeError("'mappingproxy' object does not support item "
"deletion")
def clear(self):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'clear'")
def pop(self, key, default=None):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'pop'")
def popitem(self):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'popitem'")
def setdefault(self, key, default=None):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'setdefault'")
def __repr__(self):
# Override to be identical to the Python 3 version.
return "mappingproxy(" + repr(self.data) + ")"
def metadata_proxy(d):
res = ReadOnlyDict()
res.data.update(d) # We blocked update, so we have to do it like this.
return res
else:
def isclass(klass):
return isinstance(klass, type)
TYPE = "class"
def iteritems(d):
return d.items()
def iterkeys(d):
return d.keys()
def metadata_proxy(d):
return types.MappingProxyType(dict(d))