##// END OF EJS Templates
lfs: add note messages indicating what store holds the lfs blob...
lfs: add note messages indicating what store holds the lfs blob The following corruption related patches were written prior to adding the user level cache, and it took awhile to track down why the tests changed. (It generally made things more resilient.) But I think this will be useful to the end user as well. I didn't make it --debug level, because there can be a ton of info coming out of clone/push/pull --debug. The pointers are sorted for test stability. I opted for ui.note() instead of checking ui.verbose and then using ui.write() for convenience, but I see most of this extension does the latter. I have no idea what the preferred form is.

File last commit:

r30895:c32454d6 default
r35489:02f54a1e default
Show More
zstdmt_compress.c
740 lines | 30.9 KiB | text/x-c | CLexer
/**
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
/* ====== Tuning parameters ====== */
#define ZSTDMT_NBTHREADS_MAX 128
/* ====== Compiler specifics ====== */
#if defined(_MSC_VER)
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
/* ====== Dependencies ====== */
#include <stdlib.h> /* malloc */
#include <string.h> /* memcpy */
#include "pool.h" /* threadpool */
#include "threading.h" /* mutex */
#include "zstd_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
#include "zstdmt_compress.h"
#define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
#include "xxhash.h"
/* ====== Debug ====== */
#if 0
# include <stdio.h>
# include <unistd.h>
# include <sys/times.h>
static unsigned g_debugLevel = 3;
# define DEBUGLOGRAW(l, ...) if (l<=g_debugLevel) { fprintf(stderr, __VA_ARGS__); }
# define DEBUGLOG(l, ...) if (l<=g_debugLevel) { fprintf(stderr, __FILE__ ": "); fprintf(stderr, __VA_ARGS__); fprintf(stderr, " \n"); }
# define DEBUG_PRINTHEX(l,p,n) { \
unsigned debug_u; \
for (debug_u=0; debug_u<(n); debug_u++) \
DEBUGLOGRAW(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
DEBUGLOGRAW(l, " \n"); \
}
static unsigned long long GetCurrentClockTimeMicroseconds()
{
static clock_t _ticksPerSecond = 0;
if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
struct tms junk; clock_t newTicks = (clock_t) times(&junk);
return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
}
#define MUTEX_WAIT_TIME_DLEVEL 5
#define PTHREAD_MUTEX_LOCK(mutex) \
if (g_debugLevel>=MUTEX_WAIT_TIME_DLEVEL) { \
unsigned long long beforeTime = GetCurrentClockTimeMicroseconds(); \
pthread_mutex_lock(mutex); \
unsigned long long afterTime = GetCurrentClockTimeMicroseconds(); \
unsigned long long elapsedTime = (afterTime-beforeTime); \
if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \
DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
elapsedTime, #mutex); \
} \
} else pthread_mutex_lock(mutex);
#else
# define DEBUGLOG(l, ...) {} /* disabled */
# define PTHREAD_MUTEX_LOCK(m) pthread_mutex_lock(m)
# define DEBUG_PRINTHEX(l,p,n) {}
#endif
/* ===== Buffer Pool ===== */
typedef struct buffer_s {
void* start;
size_t size;
} buffer_t;
static const buffer_t g_nullBuffer = { NULL, 0 };
typedef struct ZSTDMT_bufferPool_s {
unsigned totalBuffers;
unsigned nbBuffers;
buffer_t bTable[1]; /* variable size */
} ZSTDMT_bufferPool;
static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbThreads)
{
unsigned const maxNbBuffers = 2*nbThreads + 2;
ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)calloc(1, sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t));
if (bufPool==NULL) return NULL;
bufPool->totalBuffers = maxNbBuffers;
bufPool->nbBuffers = 0;
return bufPool;
}
static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
{
unsigned u;
if (!bufPool) return; /* compatibility with free on NULL */
for (u=0; u<bufPool->totalBuffers; u++)
free(bufPool->bTable[u].start);
free(bufPool);
}
/* assumption : invocation from main thread only ! */
static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* pool, size_t bSize)
{
if (pool->nbBuffers) { /* try to use an existing buffer */
buffer_t const buf = pool->bTable[--(pool->nbBuffers)];
size_t const availBufferSize = buf.size;
if ((availBufferSize >= bSize) & (availBufferSize <= 10*bSize)) /* large enough, but not too much */
return buf;
free(buf.start); /* size conditions not respected : scratch this buffer and create a new one */
}
/* create new buffer */
{ buffer_t buffer;
void* const start = malloc(bSize);
if (start==NULL) bSize = 0;
buffer.start = start; /* note : start can be NULL if malloc fails ! */
buffer.size = bSize;
return buffer;
}
}
/* store buffer for later re-use, up to pool capacity */
static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* pool, buffer_t buf)
{
if (buf.start == NULL) return; /* release on NULL */
if (pool->nbBuffers < pool->totalBuffers) {
pool->bTable[pool->nbBuffers++] = buf; /* store for later re-use */
return;
}
/* Reached bufferPool capacity (should not happen) */
free(buf.start);
}
/* ===== CCtx Pool ===== */
typedef struct {
unsigned totalCCtx;
unsigned availCCtx;
ZSTD_CCtx* cctx[1]; /* variable size */
} ZSTDMT_CCtxPool;
/* assumption : CCtxPool invocation only from main thread */
/* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
{
unsigned u;
for (u=0; u<pool->totalCCtx; u++)
ZSTD_freeCCtx(pool->cctx[u]); /* note : compatible with free on NULL */
free(pool);
}
/* ZSTDMT_createCCtxPool() :
* implies nbThreads >= 1 , checked by caller ZSTDMT_createCCtx() */
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(unsigned nbThreads)
{
ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) calloc(1, sizeof(ZSTDMT_CCtxPool) + (nbThreads-1)*sizeof(ZSTD_CCtx*));
if (!cctxPool) return NULL;
cctxPool->totalCCtx = nbThreads;
cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */
cctxPool->cctx[0] = ZSTD_createCCtx();
if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
DEBUGLOG(1, "cctxPool created, with %u threads", nbThreads);
return cctxPool;
}
static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* pool)
{
if (pool->availCCtx) {
pool->availCCtx--;
return pool->cctx[pool->availCCtx];
}
return ZSTD_createCCtx(); /* note : can be NULL, when creation fails ! */
}
static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
{
if (cctx==NULL) return; /* compatibility with release on NULL */
if (pool->availCCtx < pool->totalCCtx)
pool->cctx[pool->availCCtx++] = cctx;
else
/* pool overflow : should not happen, since totalCCtx==nbThreads */
ZSTD_freeCCtx(cctx);
}
/* ===== Thread worker ===== */
typedef struct {
buffer_t buffer;
size_t filled;
} inBuff_t;
typedef struct {
ZSTD_CCtx* cctx;
buffer_t src;
const void* srcStart;
size_t srcSize;
size_t dictSize;
buffer_t dstBuff;
size_t cSize;
size_t dstFlushed;
unsigned firstChunk;
unsigned lastChunk;
unsigned jobCompleted;
unsigned jobScanned;
pthread_mutex_t* jobCompleted_mutex;
pthread_cond_t* jobCompleted_cond;
ZSTD_parameters params;
ZSTD_CDict* cdict;
unsigned long long fullFrameSize;
} ZSTDMT_jobDescription;
/* ZSTDMT_compressChunk() : POOL_function type */
void ZSTDMT_compressChunk(void* jobDescription)
{
ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
const void* const src = (const char*)job->srcStart + job->dictSize;
buffer_t const dstBuff = job->dstBuff;
DEBUGLOG(3, "job (first:%u) (last:%u) : dictSize %u, srcSize %u", job->firstChunk, job->lastChunk, (U32)job->dictSize, (U32)job->srcSize);
if (job->cdict) {
size_t const initError = ZSTD_compressBegin_usingCDict(job->cctx, job->cdict, job->fullFrameSize);
if (job->cdict) DEBUGLOG(3, "using CDict ");
if (ZSTD_isError(initError)) { job->cSize = initError; goto _endJob; }
} else {
size_t const initError = ZSTD_compressBegin_advanced(job->cctx, job->srcStart, job->dictSize, job->params, job->fullFrameSize);
if (ZSTD_isError(initError)) { job->cSize = initError; goto _endJob; }
ZSTD_setCCtxParameter(job->cctx, ZSTD_p_forceWindow, 1);
}
if (!job->firstChunk) { /* flush frame header */
size_t const hSize = ZSTD_compressContinue(job->cctx, dstBuff.start, dstBuff.size, src, 0);
if (ZSTD_isError(hSize)) { job->cSize = hSize; goto _endJob; }
ZSTD_invalidateRepCodes(job->cctx);
}
DEBUGLOG(4, "Compressing : ");
DEBUG_PRINTHEX(4, job->srcStart, 12);
job->cSize = (job->lastChunk) ? /* last chunk signal */
ZSTD_compressEnd (job->cctx, dstBuff.start, dstBuff.size, src, job->srcSize) :
ZSTD_compressContinue(job->cctx, dstBuff.start, dstBuff.size, src, job->srcSize);
DEBUGLOG(3, "compressed %u bytes into %u bytes (first:%u) (last:%u)", (unsigned)job->srcSize, (unsigned)job->cSize, job->firstChunk, job->lastChunk);
_endJob:
PTHREAD_MUTEX_LOCK(job->jobCompleted_mutex);
job->jobCompleted = 1;
job->jobScanned = 0;
pthread_cond_signal(job->jobCompleted_cond);
pthread_mutex_unlock(job->jobCompleted_mutex);
}
/* ------------------------------------------ */
/* ===== Multi-threaded compression ===== */
/* ------------------------------------------ */
struct ZSTDMT_CCtx_s {
POOL_ctx* factory;
ZSTDMT_bufferPool* buffPool;
ZSTDMT_CCtxPool* cctxPool;
pthread_mutex_t jobCompleted_mutex;
pthread_cond_t jobCompleted_cond;
size_t targetSectionSize;
size_t marginSize;
size_t inBuffSize;
size_t dictSize;
size_t targetDictSize;
inBuff_t inBuff;
ZSTD_parameters params;
XXH64_state_t xxhState;
unsigned nbThreads;
unsigned jobIDMask;
unsigned doneJobID;
unsigned nextJobID;
unsigned frameEnded;
unsigned allJobsCompleted;
unsigned overlapRLog;
unsigned long long frameContentSize;
size_t sectionSize;
ZSTD_CDict* cdict;
ZSTD_CStream* cstream;
ZSTDMT_jobDescription jobs[1]; /* variable size (must lies at the end) */
};
ZSTDMT_CCtx *ZSTDMT_createCCtx(unsigned nbThreads)
{
ZSTDMT_CCtx* cctx;
U32 const minNbJobs = nbThreads + 2;
U32 const nbJobsLog2 = ZSTD_highbit32(minNbJobs) + 1;
U32 const nbJobs = 1 << nbJobsLog2;
DEBUGLOG(5, "nbThreads : %u ; minNbJobs : %u ; nbJobsLog2 : %u ; nbJobs : %u \n",
nbThreads, minNbJobs, nbJobsLog2, nbJobs);
if ((nbThreads < 1) | (nbThreads > ZSTDMT_NBTHREADS_MAX)) return NULL;
cctx = (ZSTDMT_CCtx*) calloc(1, sizeof(ZSTDMT_CCtx) + nbJobs*sizeof(ZSTDMT_jobDescription));
if (!cctx) return NULL;
cctx->nbThreads = nbThreads;
cctx->jobIDMask = nbJobs - 1;
cctx->allJobsCompleted = 1;
cctx->sectionSize = 0;
cctx->overlapRLog = 3;
cctx->factory = POOL_create(nbThreads, 1);
cctx->buffPool = ZSTDMT_createBufferPool(nbThreads);
cctx->cctxPool = ZSTDMT_createCCtxPool(nbThreads);
if (!cctx->factory | !cctx->buffPool | !cctx->cctxPool) { /* one object was not created */
ZSTDMT_freeCCtx(cctx);
return NULL;
}
if (nbThreads==1) {
cctx->cstream = ZSTD_createCStream();
if (!cctx->cstream) {
ZSTDMT_freeCCtx(cctx); return NULL;
} }
pthread_mutex_init(&cctx->jobCompleted_mutex, NULL); /* Todo : check init function return */
pthread_cond_init(&cctx->jobCompleted_cond, NULL);
DEBUGLOG(4, "mt_cctx created, for %u threads \n", nbThreads);
return cctx;
}
/* ZSTDMT_releaseAllJobResources() :
* Ensure all workers are killed first. */
static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
{
unsigned jobID;
for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[jobID].dstBuff);
mtctx->jobs[jobID].dstBuff = g_nullBuffer;
ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[jobID].src);
mtctx->jobs[jobID].src = g_nullBuffer;
ZSTDMT_releaseCCtx(mtctx->cctxPool, mtctx->jobs[jobID].cctx);
mtctx->jobs[jobID].cctx = NULL;
}
memset(mtctx->jobs, 0, (mtctx->jobIDMask+1)*sizeof(ZSTDMT_jobDescription));
ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->inBuff.buffer);
mtctx->inBuff.buffer = g_nullBuffer;
mtctx->allJobsCompleted = 1;
}
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
{
if (mtctx==NULL) return 0; /* compatible with free on NULL */
POOL_free(mtctx->factory);
if (!mtctx->allJobsCompleted) ZSTDMT_releaseAllJobResources(mtctx); /* stop workers first */
ZSTDMT_freeBufferPool(mtctx->buffPool); /* release job resources into pools first */
ZSTDMT_freeCCtxPool(mtctx->cctxPool);
ZSTD_freeCDict(mtctx->cdict);
ZSTD_freeCStream(mtctx->cstream);
pthread_mutex_destroy(&mtctx->jobCompleted_mutex);
pthread_cond_destroy(&mtctx->jobCompleted_cond);
free(mtctx);
return 0;
}
size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSDTMT_parameter parameter, unsigned value)
{
switch(parameter)
{
case ZSTDMT_p_sectionSize :
mtctx->sectionSize = value;
return 0;
case ZSTDMT_p_overlapSectionLog :
DEBUGLOG(4, "ZSTDMT_p_overlapSectionLog : %u", value);
mtctx->overlapRLog = (value >= 9) ? 0 : 9 - value;
return 0;
default :
return ERROR(compressionParameter_unsupported);
}
}
/* ------------------------------------------ */
/* ===== Multi-threaded compression ===== */
/* ------------------------------------------ */
size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel)
{
ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0);
size_t const chunkTargetSize = (size_t)1 << (params.cParams.windowLog + 2);
unsigned const nbChunksMax = (unsigned)(srcSize / chunkTargetSize) + (srcSize < chunkTargetSize) /* min 1 */;
unsigned nbChunks = MIN(nbChunksMax, mtctx->nbThreads);
size_t const proposedChunkSize = (srcSize + (nbChunks-1)) / nbChunks;
size_t const avgChunkSize = ((proposedChunkSize & 0x1FFFF) < 0xFFFF) ? proposedChunkSize + 0xFFFF : proposedChunkSize; /* avoid too small last block */
size_t remainingSrcSize = srcSize;
const char* const srcStart = (const char*)src;
size_t frameStartPos = 0;
DEBUGLOG(3, "windowLog : %2u => chunkTargetSize : %u bytes ", params.cParams.windowLog, (U32)chunkTargetSize);
DEBUGLOG(2, "nbChunks : %2u (chunkSize : %u bytes) ", nbChunks, (U32)avgChunkSize);
params.fParams.contentSizeFlag = 1;
if (nbChunks==1) { /* fallback to single-thread mode */
ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0];
return ZSTD_compressCCtx(cctx, dst, dstCapacity, src, srcSize, compressionLevel);
}
{ unsigned u;
for (u=0; u<nbChunks; u++) {
size_t const chunkSize = MIN(remainingSrcSize, avgChunkSize);
size_t const dstBufferCapacity = u ? ZSTD_compressBound(chunkSize) : dstCapacity;
buffer_t const dstAsBuffer = { dst, dstCapacity };
buffer_t const dstBuffer = u ? ZSTDMT_getBuffer(mtctx->buffPool, dstBufferCapacity) : dstAsBuffer;
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(mtctx->cctxPool);
if ((cctx==NULL) || (dstBuffer.start==NULL)) {
mtctx->jobs[u].cSize = ERROR(memory_allocation); /* job result */
mtctx->jobs[u].jobCompleted = 1;
nbChunks = u+1;
break; /* let's wait for previous jobs to complete, but don't start new ones */
}
mtctx->jobs[u].srcStart = srcStart + frameStartPos;
mtctx->jobs[u].srcSize = chunkSize;
mtctx->jobs[u].fullFrameSize = srcSize;
mtctx->jobs[u].params = params;
mtctx->jobs[u].dstBuff = dstBuffer;
mtctx->jobs[u].cctx = cctx;
mtctx->jobs[u].firstChunk = (u==0);
mtctx->jobs[u].lastChunk = (u==nbChunks-1);
mtctx->jobs[u].jobCompleted = 0;
mtctx->jobs[u].jobCompleted_mutex = &mtctx->jobCompleted_mutex;
mtctx->jobs[u].jobCompleted_cond = &mtctx->jobCompleted_cond;
DEBUGLOG(3, "posting job %u (%u bytes)", u, (U32)chunkSize);
DEBUG_PRINTHEX(3, mtctx->jobs[u].srcStart, 12);
POOL_add(mtctx->factory, ZSTDMT_compressChunk, &mtctx->jobs[u]);
frameStartPos += chunkSize;
remainingSrcSize -= chunkSize;
} }
/* note : since nbChunks <= nbThreads, all jobs should be running immediately in parallel */
{ unsigned chunkID;
size_t error = 0, dstPos = 0;
for (chunkID=0; chunkID<nbChunks; chunkID++) {
DEBUGLOG(3, "waiting for chunk %u ", chunkID);
PTHREAD_MUTEX_LOCK(&mtctx->jobCompleted_mutex);
while (mtctx->jobs[chunkID].jobCompleted==0) {
DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", chunkID);
pthread_cond_wait(&mtctx->jobCompleted_cond, &mtctx->jobCompleted_mutex);
}
pthread_mutex_unlock(&mtctx->jobCompleted_mutex);
DEBUGLOG(3, "ready to write chunk %u ", chunkID);
ZSTDMT_releaseCCtx(mtctx->cctxPool, mtctx->jobs[chunkID].cctx);
mtctx->jobs[chunkID].cctx = NULL;
mtctx->jobs[chunkID].srcStart = NULL;
{ size_t const cSize = mtctx->jobs[chunkID].cSize;
if (ZSTD_isError(cSize)) error = cSize;
if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall);
if (chunkID) { /* note : chunk 0 is already written directly into dst */
if (!error) memcpy((char*)dst + dstPos, mtctx->jobs[chunkID].dstBuff.start, cSize);
ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[chunkID].dstBuff);
mtctx->jobs[chunkID].dstBuff = g_nullBuffer;
}
dstPos += cSize ;
}
}
if (!error) DEBUGLOG(3, "compressed size : %u ", (U32)dstPos);
return error ? error : dstPos;
}
}
/* ====================================== */
/* ======= Streaming API ======= */
/* ====================================== */
static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* zcs) {
while (zcs->doneJobID < zcs->nextJobID) {
unsigned const jobID = zcs->doneJobID & zcs->jobIDMask;
PTHREAD_MUTEX_LOCK(&zcs->jobCompleted_mutex);
while (zcs->jobs[jobID].jobCompleted==0) {
DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", zcs->doneJobID); /* we want to block when waiting for data to flush */
pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex);
}
pthread_mutex_unlock(&zcs->jobCompleted_mutex);
zcs->doneJobID++;
}
}
static size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* zcs,
const void* dict, size_t dictSize, unsigned updateDict,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
ZSTD_customMem const cmem = { NULL, NULL, NULL };
DEBUGLOG(3, "Started new compression, with windowLog : %u", params.cParams.windowLog);
if (zcs->nbThreads==1) return ZSTD_initCStream_advanced(zcs->cstream, dict, dictSize, params, pledgedSrcSize);
if (zcs->allJobsCompleted == 0) { /* previous job not correctly finished */
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
zcs->allJobsCompleted = 1;
}
zcs->params = params;
if (updateDict) {
ZSTD_freeCDict(zcs->cdict); zcs->cdict = NULL;
if (dict && dictSize) {
zcs->cdict = ZSTD_createCDict_advanced(dict, dictSize, 0, params, cmem);
if (zcs->cdict == NULL) return ERROR(memory_allocation);
} }
zcs->frameContentSize = pledgedSrcSize;
zcs->targetDictSize = (zcs->overlapRLog>=9) ? 0 : (size_t)1 << (zcs->params.cParams.windowLog - zcs->overlapRLog);
DEBUGLOG(4, "overlapRLog : %u ", zcs->overlapRLog);
DEBUGLOG(3, "overlap Size : %u KB", (U32)(zcs->targetDictSize>>10));
zcs->targetSectionSize = zcs->sectionSize ? zcs->sectionSize : (size_t)1 << (zcs->params.cParams.windowLog + 2);
zcs->targetSectionSize = MAX(ZSTDMT_SECTION_SIZE_MIN, zcs->targetSectionSize);
zcs->targetSectionSize = MAX(zcs->targetDictSize, zcs->targetSectionSize);
DEBUGLOG(3, "Section Size : %u KB", (U32)(zcs->targetSectionSize>>10));
zcs->marginSize = zcs->targetSectionSize >> 2;
zcs->inBuffSize = zcs->targetDictSize + zcs->targetSectionSize + zcs->marginSize;
zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize);
if (zcs->inBuff.buffer.start == NULL) return ERROR(memory_allocation);
zcs->inBuff.filled = 0;
zcs->dictSize = 0;
zcs->doneJobID = 0;
zcs->nextJobID = 0;
zcs->frameEnded = 0;
zcs->allJobsCompleted = 0;
if (params.fParams.checksumFlag) XXH64_reset(&zcs->xxhState, 0);
return 0;
}
size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* zcs,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
return ZSTDMT_initCStream_internal(zcs, dict, dictSize, 1, params, pledgedSrcSize);
}
/* ZSTDMT_resetCStream() :
* pledgedSrcSize is optional and can be zero == unknown */
size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* zcs, unsigned long long pledgedSrcSize)
{
if (zcs->nbThreads==1) return ZSTD_resetCStream(zcs->cstream, pledgedSrcSize);
return ZSTDMT_initCStream_internal(zcs, NULL, 0, 0, zcs->params, pledgedSrcSize);
}
size_t ZSTDMT_initCStream(ZSTDMT_CCtx* zcs, int compressionLevel) {
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, 0);
return ZSTDMT_initCStream_internal(zcs, NULL, 0, 1, params, 0);
}
static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* zcs, size_t srcSize, unsigned endFrame)
{
size_t const dstBufferCapacity = ZSTD_compressBound(srcSize);
buffer_t const dstBuffer = ZSTDMT_getBuffer(zcs->buffPool, dstBufferCapacity);
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(zcs->cctxPool);
unsigned const jobID = zcs->nextJobID & zcs->jobIDMask;
if ((cctx==NULL) || (dstBuffer.start==NULL)) {
zcs->jobs[jobID].jobCompleted = 1;
zcs->nextJobID++;
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return ERROR(memory_allocation);
}
DEBUGLOG(4, "preparing job %u to compress %u bytes with %u preload ", zcs->nextJobID, (U32)srcSize, (U32)zcs->dictSize);
zcs->jobs[jobID].src = zcs->inBuff.buffer;
zcs->jobs[jobID].srcStart = zcs->inBuff.buffer.start;
zcs->jobs[jobID].srcSize = srcSize;
zcs->jobs[jobID].dictSize = zcs->dictSize; /* note : zcs->inBuff.filled is presumed >= srcSize + dictSize */
zcs->jobs[jobID].params = zcs->params;
if (zcs->nextJobID) zcs->jobs[jobID].params.fParams.checksumFlag = 0; /* do not calculate checksum within sections, just keep it in header for first section */
zcs->jobs[jobID].cdict = zcs->nextJobID==0 ? zcs->cdict : NULL;
zcs->jobs[jobID].fullFrameSize = zcs->frameContentSize;
zcs->jobs[jobID].dstBuff = dstBuffer;
zcs->jobs[jobID].cctx = cctx;
zcs->jobs[jobID].firstChunk = (zcs->nextJobID==0);
zcs->jobs[jobID].lastChunk = endFrame;
zcs->jobs[jobID].jobCompleted = 0;
zcs->jobs[jobID].dstFlushed = 0;
zcs->jobs[jobID].jobCompleted_mutex = &zcs->jobCompleted_mutex;
zcs->jobs[jobID].jobCompleted_cond = &zcs->jobCompleted_cond;
/* get a new buffer for next input */
if (!endFrame) {
size_t const newDictSize = MIN(srcSize + zcs->dictSize, zcs->targetDictSize);
zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize);
if (zcs->inBuff.buffer.start == NULL) { /* not enough memory to allocate next input buffer */
zcs->jobs[jobID].jobCompleted = 1;
zcs->nextJobID++;
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return ERROR(memory_allocation);
}
DEBUGLOG(5, "inBuff filled to %u", (U32)zcs->inBuff.filled);
zcs->inBuff.filled -= srcSize + zcs->dictSize - newDictSize;
DEBUGLOG(5, "new job : filled to %u, with %u dict and %u src", (U32)zcs->inBuff.filled, (U32)newDictSize, (U32)(zcs->inBuff.filled - newDictSize));
memmove(zcs->inBuff.buffer.start, (const char*)zcs->jobs[jobID].srcStart + zcs->dictSize + srcSize - newDictSize, zcs->inBuff.filled);
DEBUGLOG(5, "new inBuff pre-filled");
zcs->dictSize = newDictSize;
} else {
zcs->inBuff.buffer = g_nullBuffer;
zcs->inBuff.filled = 0;
zcs->dictSize = 0;
zcs->frameEnded = 1;
if (zcs->nextJobID == 0)
zcs->params.fParams.checksumFlag = 0; /* single chunk : checksum is calculated directly within worker thread */
}
DEBUGLOG(3, "posting job %u : %u bytes (end:%u) (note : doneJob = %u=>%u)", zcs->nextJobID, (U32)zcs->jobs[jobID].srcSize, zcs->jobs[jobID].lastChunk, zcs->doneJobID, zcs->doneJobID & zcs->jobIDMask);
POOL_add(zcs->factory, ZSTDMT_compressChunk, &zcs->jobs[jobID]); /* this call is blocking when thread worker pool is exhausted */
zcs->nextJobID++;
return 0;
}
/* ZSTDMT_flushNextJob() :
* output : will be updated with amount of data flushed .
* blockToFlush : if >0, the function will block and wait if there is no data available to flush .
* @return : amount of data remaining within internal buffer, 1 if unknown but > 0, 0 if no more, or an error code */
static size_t ZSTDMT_flushNextJob(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, unsigned blockToFlush)
{
unsigned const wJobID = zcs->doneJobID & zcs->jobIDMask;
if (zcs->doneJobID == zcs->nextJobID) return 0; /* all flushed ! */
PTHREAD_MUTEX_LOCK(&zcs->jobCompleted_mutex);
while (zcs->jobs[wJobID].jobCompleted==0) {
DEBUGLOG(5, "waiting for jobCompleted signal from job %u", zcs->doneJobID);
if (!blockToFlush) { pthread_mutex_unlock(&zcs->jobCompleted_mutex); return 0; } /* nothing ready to be flushed => skip */
pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex); /* block when nothing available to flush */
}
pthread_mutex_unlock(&zcs->jobCompleted_mutex);
/* compression job completed : output can be flushed */
{ ZSTDMT_jobDescription job = zcs->jobs[wJobID];
if (!job.jobScanned) {
if (ZSTD_isError(job.cSize)) {
DEBUGLOG(5, "compression error detected ");
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return job.cSize;
}
ZSTDMT_releaseCCtx(zcs->cctxPool, job.cctx);
zcs->jobs[wJobID].cctx = NULL;
DEBUGLOG(5, "zcs->params.fParams.checksumFlag : %u ", zcs->params.fParams.checksumFlag);
if (zcs->params.fParams.checksumFlag) {
XXH64_update(&zcs->xxhState, (const char*)job.srcStart + job.dictSize, job.srcSize);
if (zcs->frameEnded && (zcs->doneJobID+1 == zcs->nextJobID)) { /* write checksum at end of last section */
U32 const checksum = (U32)XXH64_digest(&zcs->xxhState);
DEBUGLOG(4, "writing checksum : %08X \n", checksum);
MEM_writeLE32((char*)job.dstBuff.start + job.cSize, checksum);
job.cSize += 4;
zcs->jobs[wJobID].cSize += 4;
} }
ZSTDMT_releaseBuffer(zcs->buffPool, job.src);
zcs->jobs[wJobID].srcStart = NULL;
zcs->jobs[wJobID].src = g_nullBuffer;
zcs->jobs[wJobID].jobScanned = 1;
}
{ size_t const toWrite = MIN(job.cSize - job.dstFlushed, output->size - output->pos);
DEBUGLOG(4, "Flushing %u bytes from job %u ", (U32)toWrite, zcs->doneJobID);
memcpy((char*)output->dst + output->pos, (const char*)job.dstBuff.start + job.dstFlushed, toWrite);
output->pos += toWrite;
job.dstFlushed += toWrite;
}
if (job.dstFlushed == job.cSize) { /* output buffer fully flushed => move to next one */
ZSTDMT_releaseBuffer(zcs->buffPool, job.dstBuff);
zcs->jobs[wJobID].dstBuff = g_nullBuffer;
zcs->jobs[wJobID].jobCompleted = 0;
zcs->doneJobID++;
} else {
zcs->jobs[wJobID].dstFlushed = job.dstFlushed;
}
/* return value : how many bytes left in buffer ; fake it to 1 if unknown but >0 */
if (job.cSize > job.dstFlushed) return (job.cSize - job.dstFlushed);
if (zcs->doneJobID < zcs->nextJobID) return 1; /* still some buffer to flush */
zcs->allJobsCompleted = zcs->frameEnded; /* frame completed and entirely flushed */
return 0; /* everything flushed */
} }
size_t ZSTDMT_compressStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
size_t const newJobThreshold = zcs->dictSize + zcs->targetSectionSize + zcs->marginSize;
if (zcs->frameEnded) return ERROR(stage_wrong); /* current frame being ended. Only flush is allowed. Restart with init */
if (zcs->nbThreads==1) return ZSTD_compressStream(zcs->cstream, output, input);
/* fill input buffer */
{ size_t const toLoad = MIN(input->size - input->pos, zcs->inBuffSize - zcs->inBuff.filled);
memcpy((char*)zcs->inBuff.buffer.start + zcs->inBuff.filled, input->src, toLoad);
input->pos += toLoad;
zcs->inBuff.filled += toLoad;
}
if ( (zcs->inBuff.filled >= newJobThreshold) /* filled enough : let's compress */
&& (zcs->nextJobID <= zcs->doneJobID + zcs->jobIDMask) ) { /* avoid overwriting job round buffer */
CHECK_F( ZSTDMT_createCompressionJob(zcs, zcs->targetSectionSize, 0) );
}
/* check for data to flush */
CHECK_F( ZSTDMT_flushNextJob(zcs, output, (zcs->inBuff.filled == zcs->inBuffSize)) ); /* block if it wasn't possible to create new job due to saturation */
/* recommended next input size : fill current input buffer */
return zcs->inBuffSize - zcs->inBuff.filled; /* note : could be zero when input buffer is fully filled and no more availability to create new job */
}
static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, unsigned endFrame)
{
size_t const srcSize = zcs->inBuff.filled - zcs->dictSize;
if (srcSize) DEBUGLOG(4, "flushing : %u bytes left to compress", (U32)srcSize);
if ( ((srcSize > 0) || (endFrame && !zcs->frameEnded))
&& (zcs->nextJobID <= zcs->doneJobID + zcs->jobIDMask) ) {
CHECK_F( ZSTDMT_createCompressionJob(zcs, srcSize, endFrame) );
}
/* check if there is any data available to flush */
DEBUGLOG(5, "zcs->doneJobID : %u ; zcs->nextJobID : %u ", zcs->doneJobID, zcs->nextJobID);
return ZSTDMT_flushNextJob(zcs, output, 1);
}
size_t ZSTDMT_flushStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output)
{
if (zcs->nbThreads==1) return ZSTD_flushStream(zcs->cstream, output);
return ZSTDMT_flushStream_internal(zcs, output, 0);
}
size_t ZSTDMT_endStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output)
{
if (zcs->nbThreads==1) return ZSTD_endStream(zcs->cstream, output);
return ZSTDMT_flushStream_internal(zcs, output, 1);
}