##// END OF EJS Templates
bookmarks: check HG_PENDING strictly...
bookmarks: check HG_PENDING strictly Before this patch, checking HG_PENDING in bookmarks.py might cause unintentional reading unrelated '.hg/bookmarks.pending' in, because it just examines existence of HG_PENDING environment variable. This patch uses txnutil.trypending() to check HG_PENDING strictly. This patch also changes share extension. Enabling share extension (+ bookmark sharing) makes bookmarks._getbkfile() receive repo to be shared (= "srcrepo"). On the other hand, HG_PENDING always refers current working repo (= "currepo"), and bookmarks.pending is written only into currepo. Therefore, we should try to read .hg/bookmarks.pending of currepo in at first. If it doesn't exist, we try to read .hg/bookmarks of srcrepo in. Even after this patch, an external hook spawned in currepo can't see pending changes in currepo via srcrepo, even though such changes become visible after closing transaction, because there is no easy and cheap way to know existence of pending changes in currepo via srcrepo. Please see https://www.mercurial-scm.org/wiki/SharedRepository, too. BTW, this patch may cause failure of bisect in the repository of Mercurial itself, if examination at bisecting assumes that an external hook can see all pending changes while nested transactions across repositories. This invisibility issue will be fixed by subsequent patch, which allows HG_PENDING to refer multiple repositories.

File last commit:

r29695:f2846d54 default
r31052:0332b8fa default
Show More
mpatch.py
170 lines | 4.8 KiB | text/x-python | PythonLexer
# mpatch.py - Python implementation of mpatch.c
#
# Copyright 2009 Matt Mackall <mpm@selenic.com> and others
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import struct
from . import policy, pycompat
stringio = pycompat.stringio
modulepolicy = policy.policy
policynocffi = policy.policynocffi
class mpatchError(Exception):
"""error raised when a delta cannot be decoded
"""
# This attempts to apply a series of patches in time proportional to
# the total size of the patches, rather than patches * len(text). This
# means rather than shuffling strings around, we shuffle around
# pointers to fragments with fragment lists.
#
# When the fragment lists get too long, we collapse them. To do this
# efficiently, we do all our operations inside a buffer created by
# mmap and simply use memmove. This avoids creating a bunch of large
# temporary string buffers.
def _pull(dst, src, l): # pull l bytes from src
while l:
f = src.pop()
if f[0] > l: # do we need to split?
src.append((f[0] - l, f[1] + l))
dst.append((l, f[1]))
return
dst.append(f)
l -= f[0]
def _move(m, dest, src, count):
"""move count bytes from src to dest
The file pointer is left at the end of dest.
"""
m.seek(src)
buf = m.read(count)
m.seek(dest)
m.write(buf)
def _collect(m, buf, list):
start = buf
for l, p in reversed(list):
_move(m, buf, p, l)
buf += l
return (buf - start, start)
def patches(a, bins):
if not bins:
return a
plens = [len(x) for x in bins]
pl = sum(plens)
bl = len(a) + pl
tl = bl + bl + pl # enough for the patches and two working texts
b1, b2 = 0, bl
if not tl:
return a
m = stringio()
# load our original text
m.write(a)
frags = [(len(a), b1)]
# copy all the patches into our segment so we can memmove from them
pos = b2 + bl
m.seek(pos)
for p in bins: m.write(p)
for plen in plens:
# if our list gets too long, execute it
if len(frags) > 128:
b2, b1 = b1, b2
frags = [_collect(m, b1, frags)]
new = []
end = pos + plen
last = 0
while pos < end:
m.seek(pos)
try:
p1, p2, l = struct.unpack(">lll", m.read(12))
except struct.error:
raise mpatchError("patch cannot be decoded")
_pull(new, frags, p1 - last) # what didn't change
_pull([], frags, p2 - p1) # what got deleted
new.append((l, pos + 12)) # what got added
pos += l + 12
last = p2
frags.extend(reversed(new)) # what was left at the end
t = _collect(m, b2, frags)
m.seek(t[1])
return m.read(t[0])
def patchedsize(orig, delta):
outlen, last, bin = 0, 0, 0
binend = len(delta)
data = 12
while data <= binend:
decode = delta[bin:bin + 12]
start, end, length = struct.unpack(">lll", decode)
if start > end:
break
bin = data + length
data = bin + 12
outlen += start - last
last = end
outlen += length
if bin != binend:
raise mpatchError("patch cannot be decoded")
outlen += orig - last
return outlen
if modulepolicy not in policynocffi:
try:
from _mpatch_cffi import ffi, lib
except ImportError:
if modulepolicy == 'cffi': # strict cffi import
raise
else:
@ffi.def_extern()
def cffi_get_next_item(arg, pos):
all, bins = ffi.from_handle(arg)
container = ffi.new("struct mpatch_flist*[1]")
to_pass = ffi.new("char[]", str(bins[pos]))
all.append(to_pass)
r = lib.mpatch_decode(to_pass, len(to_pass) - 1, container)
if r < 0:
return ffi.NULL
return container[0]
def patches(text, bins):
lgt = len(bins)
all = []
if not lgt:
return text
arg = (all, bins)
patch = lib.mpatch_fold(ffi.new_handle(arg),
lib.cffi_get_next_item, 0, lgt)
if not patch:
raise mpatchError("cannot decode chunk")
outlen = lib.mpatch_calcsize(len(text), patch)
if outlen < 0:
lib.mpatch_lfree(patch)
raise mpatchError("inconsistency detected")
buf = ffi.new("char[]", outlen)
if lib.mpatch_apply(buf, text, len(text), patch) < 0:
lib.mpatch_lfree(patch)
raise mpatchError("error applying patches")
res = ffi.buffer(buf, outlen)[:]
lib.mpatch_lfree(patch)
return res