##// END OF EJS Templates
exchangev2: fetch file revisions...
exchangev2: fetch file revisions Now that the server has an API for fetching file data, we can call into it to fetch file revisions. The implementation is relatively straightforward: we examine the manifests that we fetched and find all new file revisions referenced by them. We build up a mapping from file path to file nodes to manifest node. (The mapping to first manifest node allows us to map back to first changelog node/revision, which is used for the linkrev.) Once that map is built up, we iterate over it in a deterministic manner and fetch and store file data. The code is very similar to manifest fetching. So similar that we could probably extract the common bits into a generic function. With file data retrieval implemented, `hg clone` and `hg pull` are effectively feature complete, at least as far as the completeness of data transfer for essential repository data (changesets, manifests, files, phases, and bookmarks). We're still missing support for obsolescence markers, the hgtags fnodes cache, and the branchmap cache. But these are non-essential for the moment (and will be implemented later). This is a good point to assess the state of exchangev2 in terms of performance. I ran a local `hg clone` for the mozilla-unified repository using both version 1 and version 2 of the wire protocols and exchange methods. This is effectively comparing the performance of the wire protocol overhead and "getbundle" versus domain-specific commands. Wire protocol version 2 doesn't have compression implemented yet. So I tested version 1 with `server.compressionengines=none` to remove compression overhead from the equation. server before: user 220.420+0.000 sys 14.420+0.000 after: user 321.980+0.000 sys 18.990+0.000 client before: real 561.650 secs (user 497.670+0.000 sys 28.160+0.000) after: real 1226.260 secs (user 944.240+0.000 sys 354.150+0.000) We have substantial regressions on both client and server. This is obviously not desirable. I'm aware of some reasons: * Lack of hgtagsfnodes transfer (contributes significant CPU to client). * Lack of branch cache transfer (contributes significant CPU to client). * Little to no profiling / optimization performed on wire protocol version 2 code. * There appears to be a memory leak on the client and that is likely causing swapping on my machine. * Using multiple threads on the client may be counter-productive because Python. * We're not compressing on the server. * We're tracking file nodes on the client via manifest diffing rather than using linkrev shortcuts on the server. I'm pretty confident that most of these issues are addressable. But even if we can't get wire protocol version 2 on performance parity with "getbundle," I still think it is important to have the set of low level data-specific retrieval commands that we have implemented so far. This is because the existence of such commands allows flexibility in how clients access server data. Differential Revision: https://phab.mercurial-scm.org/D4491

File last commit:

r32601:01280ec5 stable
r39676:039bf1ed default
Show More
bundlespec.txt
84 lines | 2.6 KiB | text/plain | TextLexer
Mercurial supports generating standalone "bundle" files that hold repository
data. These "bundles" are typically saved locally and used later or exchanged
between different repositories, possibly on different machines. Example
commands using bundles are :hg:`bundle` and :hg:`unbundle`.
Generation of bundle files is controlled by a "bundle specification"
("bundlespec") string. This string tells the bundle generation process how
to create the bundle.
A "bundlespec" string is composed of the following elements:
type
A string denoting the bundle format to use.
compression
Denotes the compression engine to use compressing the raw bundle data.
parameters
Arbitrary key-value parameters to further control bundle generation.
A "bundlespec" string has the following formats:
<type>
The literal bundle format string is used.
<compression>-<type>
The compression engine and format are delimited by a hyphen (``-``).
Optional parameters follow the ``<type>``. Parameters are URI escaped
``key=value`` pairs. Each pair is delimited by a semicolon (``;``). The
first parameter begins after a ``;`` immediately following the ``<type>``
value.
Available Types
===============
The following bundle <type> strings are available:
v1
Produces a legacy "changegroup" version 1 bundle.
This format is compatible with nearly all Mercurial clients because it is
the oldest. However, it has some limitations, which is why it is no longer
the default for new repositories.
``v1`` bundles can be used with modern repositories using the "generaldelta"
storage format. However, it may take longer to produce the bundle and the
resulting bundle may be significantly larger than a ``v2`` bundle.
``v1`` bundles can only use the ``gzip``, ``bzip2``, and ``none`` compression
formats.
v2
Produces a version 2 bundle.
Version 2 bundles are an extensible format that can store additional
repository data (such as bookmarks and phases information) and they can
store data more efficiently, resulting in smaller bundles.
Version 2 bundles can also use modern compression engines, such as
``zstd``, making them faster to compress and often smaller.
Available Compression Engines
=============================
The following bundle <compression> engines can be used:
.. bundlecompressionmarker
Examples
========
``v2``
Produce a ``v2`` bundle using default options, including compression.
``none-v1``
Produce a ``v1`` bundle with no compression.
``zstd-v2``
Produce a ``v2`` bundle with zstandard compression using default
settings.
``zstd-v1``
This errors because ``zstd`` is not supported for ``v1`` types.