##// END OF EJS Templates
bundle2: extract logic for seeking bundle2 part into own class...
bundle2: extract logic for seeking bundle2 part into own class Currently, unbundlepart classes support bi-directional seeking. Most consumers of unbundlepart only ever seek forward - typically as part of moving to the end of the bundle part so they can move on to the next one. But regardless of the actual usage of the part, instances maintain an index mapping offsets within the underlying raw payload to offsets within the decoded payload. Maintaining the mapping of offset data can be expensive in terms of memory use. Furthermore, many bundle2 consumers don't have access to an underlying seekable stream. This includes all compressed bundles. So maintaining offset data when the underlying stream can't be seeked anyway is wasteful. And since many bundle2 streams can't be seeked, it seems like a bad idea to expose a seek API in bundle2 parts by default. If you provide them, people will attempt to use them. Seekable bundle2 parts should be the exception, not the rule. This commit starts the process dividing unbundlepart into 2 classes: a base class that supports linear, one-time reads and a child class that supports bi-directional seeking. In this first commit, we split various methods and attributes out into a new "seekableunbundlepart" class. Previous instantiators of "unbundlepart" now instantiate "seekableunbundlepart." This preserves backwards compatibility. The coupling between the classes is still tight: "unbundlepart" cannot be used on its own. This will be addressed in subsequent commits. Differential Revision: https://phab.mercurial-scm.org/D1386

File last commit:

r30822:b54a2984 default
r35109:073eec08 default
Show More
entropy_common.c
227 lines | 8.8 KiB | text/x-c | CLexer
/*
Common functions of New Generation Entropy library
Copyright (C) 2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
*************************************************************************** */
/* *************************************
* Dependencies
***************************************/
#include "mem.h"
#include "error_private.h" /* ERR_*, ERROR */
#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY /* HUF_TABLELOG_ABSOLUTEMAX */
#include "huf.h"
/*-****************************************
* FSE Error Management
******************************************/
unsigned FSE_isError(size_t code) { return ERR_isError(code); }
const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
/* **************************************************************
* HUF Error Management
****************************************************************/
unsigned HUF_isError(size_t code) { return ERR_isError(code); }
const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*-**************************************************************
* FSE NCount encoding-decoding
****************************************************************/
static short FSE_abs(short a) { return (short)(a<0 ? -a : a); }
size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return ERROR(srcSize_wrong);
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) & (charnum<=*maxSVPtr)) {
if (previous0) {
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF) {
n0 += 24;
if (ip < iend-5) {
ip += 2;
bitStream = MEM_readLE32(ip) >> bitCount;
} else {
bitStream >>= 16;
bitCount += 16;
} }
while ((bitStream & 3) == 3) {
n0 += 3;
bitStream >>= 2;
bitCount += 2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
bitStream = MEM_readLE32(ip) >> bitCount;
} else {
bitStream >>= 2;
} }
{ short const max = (short)((2*threshold-1)-remaining);
short count;
if ((bitStream & (threshold-1)) < (U32)max) {
count = (short)(bitStream & (threshold-1));
bitCount += nbBits-1;
} else {
count = (short)(bitStream & (2*threshold-1));
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= FSE_abs(count);
normalizedCounter[charnum++] = count;
previous0 = !count;
while (remaining < threshold) {
nbBits--;
threshold >>= 1;
}
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
} } /* while ((remaining>1) & (charnum<=*maxSVPtr)) */
if (remaining != 1) return ERROR(corruption_detected);
if (bitCount > 32) return ERROR(corruption_detected);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
return ip-istart;
}
/*! HUF_readStats() :
Read compact Huffman tree, saved by HUF_writeCTable().
`huffWeight` is destination buffer.
`rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
@return : size read from `src` , or an error Code .
Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
*/
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 weightTotal;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
/* memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) { /* special header */
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
{ U32 n;
for (n=0; n<oSize; n+=2) {
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
} } }
else { /* header compressed with FSE (normal case) */
FSE_DTable fseWorkspace[FSE_DTABLE_SIZE_U32(6)]; /* 6 is max possible tableLog for HUF header (maybe even 5, to be tested) */
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
oSize = FSE_decompress_wksp(huffWeight, hwSize-1, ip+1, iSize, fseWorkspace, 6); /* max (hwSize-1) values decoded, as last one is implied */
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
weightTotal = 0;
{ U32 n; for (n=0; n<oSize; n++) {
if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
} }
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
{ U32 const tableLog = BIT_highbit32(weightTotal) + 1;
if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
*tableLogPtr = tableLog;
/* determine last weight */
{ U32 const total = 1 << tableLog;
U32 const rest = total - weightTotal;
U32 const verif = 1 << BIT_highbit32(rest);
U32 const lastWeight = BIT_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
} }
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
return iSize+1;
}