##// END OF EJS Templates
wireprotov2: implement commands as a generator of objects...
wireprotov2: implement commands as a generator of objects Previously, wire protocol version 2 inherited version 1's model of having separate types to represent the results of different wire protocol commands. As I implemented more powerful commands in future commits, I found I was using a common pattern of returning a special type to hold a generator. This meant the command function required a closure to do most of the work. That made logic flow more difficult to follow. I also noticed that many commands were effectively a sequence of objects to be CBOR encoded. I think it makes sense to define version 2 commands as generators. This way, commands can simply emit the data structures they wish to send to the client. This eliminates the need for a closure in command functions and removes encoding from the bodies of commands. As part of this commit, the handling of response objects has been moved into the serverreactor class. This puts the reactor in the driver's seat with regards to CBOR encoding and error handling. Having error handling in the function that emits frames is particularly important because exceptions in that function can lead to things getting in a bad state: I'm fairly certain that uncaught exceptions in the frame generator were causing deadlocks. I also introduced a dedicated error type for explicit error reporting in command handlers. This will be used in subsequent commits. There's still a bit of work to be done here, especially around formalizing the error handling "protocol." I've added yet another TODO to track this so we don't forget. Test output changed because we're using generators and no longer know we are at the end of the data until we hit the end of the generator. This means we can't emit the end-of-stream flag until we've exhausted the generator. Hence the introduction of 0-sized end-of-stream frames. Differential Revision: https://phab.mercurial-scm.org/D4472

File last commit:

r39488:481db51c merge default
r39595:07b58266 default
Show More
policy.py
109 lines | 3.6 KiB | text/x-python | PythonLexer
# policy.py - module policy logic for Mercurial.
#
# Copyright 2015 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import os
import sys
# Rules for how modules can be loaded. Values are:
#
# c - require C extensions
# allow - allow pure Python implementation when C loading fails
# cffi - required cffi versions (implemented within pure module)
# cffi-allow - allow pure Python implementation if cffi version is missing
# py - only load pure Python modules
#
# By default, fall back to the pure modules so the in-place build can
# run without recompiling the C extensions. This will be overridden by
# __modulepolicy__ generated by setup.py.
policy = b'allow'
_packageprefs = {
# policy: (versioned package, pure package)
b'c': (r'cext', None),
b'allow': (r'cext', r'pure'),
b'cffi': (r'cffi', None),
b'cffi-allow': (r'cffi', r'pure'),
b'py': (None, r'pure'),
}
try:
from . import __modulepolicy__
policy = __modulepolicy__.modulepolicy
except ImportError:
pass
# PyPy doesn't load C extensions.
#
# The canonical way to do this is to test platform.python_implementation().
# But we don't import platform and don't bloat for it here.
if r'__pypy__' in sys.builtin_module_names:
policy = b'cffi'
# Environment variable can always force settings.
if sys.version_info[0] >= 3:
if r'HGMODULEPOLICY' in os.environ:
policy = os.environ[r'HGMODULEPOLICY'].encode(r'utf-8')
else:
policy = os.environ.get(r'HGMODULEPOLICY', policy)
def _importfrom(pkgname, modname):
# from .<pkgname> import <modname> (where . is looked through this module)
fakelocals = {}
pkg = __import__(pkgname, globals(), fakelocals, [modname], level=1)
try:
fakelocals[modname] = mod = getattr(pkg, modname)
except AttributeError:
raise ImportError(r'cannot import name %s' % modname)
# force import; fakelocals[modname] may be replaced with the real module
getattr(mod, r'__doc__', None)
return fakelocals[modname]
# keep in sync with "version" in C modules
_cextversions = {
(r'cext', r'base85'): 1,
(r'cext', r'bdiff'): 3,
(r'cext', r'mpatch'): 1,
(r'cext', r'osutil'): 4,
(r'cext', r'parsers'): 11,
}
# map import request to other package or module
_modredirects = {
(r'cext', r'charencode'): (r'cext', r'parsers'),
(r'cffi', r'base85'): (r'pure', r'base85'),
(r'cffi', r'charencode'): (r'pure', r'charencode'),
(r'cffi', r'parsers'): (r'pure', r'parsers'),
}
def _checkmod(pkgname, modname, mod):
expected = _cextversions.get((pkgname, modname))
actual = getattr(mod, r'version', None)
if actual != expected:
raise ImportError(r'cannot import module %s.%s '
r'(expected version: %d, actual: %r)'
% (pkgname, modname, expected, actual))
def importmod(modname):
"""Import module according to policy and check API version"""
try:
verpkg, purepkg = _packageprefs[policy]
except KeyError:
raise ImportError(r'invalid HGMODULEPOLICY %r' % policy)
assert verpkg or purepkg
if verpkg:
pn, mn = _modredirects.get((verpkg, modname), (verpkg, modname))
try:
mod = _importfrom(pn, mn)
if pn == verpkg:
_checkmod(pn, mn, mod)
return mod
except ImportError:
if not purepkg:
raise
pn, mn = _modredirects.get((purepkg, modname), (purepkg, modname))
return _importfrom(pn, mn)