##// END OF EJS Templates
wireprotov2: implement commands as a generator of objects...
wireprotov2: implement commands as a generator of objects Previously, wire protocol version 2 inherited version 1's model of having separate types to represent the results of different wire protocol commands. As I implemented more powerful commands in future commits, I found I was using a common pattern of returning a special type to hold a generator. This meant the command function required a closure to do most of the work. That made logic flow more difficult to follow. I also noticed that many commands were effectively a sequence of objects to be CBOR encoded. I think it makes sense to define version 2 commands as generators. This way, commands can simply emit the data structures they wish to send to the client. This eliminates the need for a closure in command functions and removes encoding from the bodies of commands. As part of this commit, the handling of response objects has been moved into the serverreactor class. This puts the reactor in the driver's seat with regards to CBOR encoding and error handling. Having error handling in the function that emits frames is particularly important because exceptions in that function can lead to things getting in a bad state: I'm fairly certain that uncaught exceptions in the frame generator were causing deadlocks. I also introduced a dedicated error type for explicit error reporting in command handlers. This will be used in subsequent commits. There's still a bit of work to be done here, especially around formalizing the error handling "protocol." I've added yet another TODO to track this so we don't forget. Test output changed because we're using generators and no longer know we are at the end of the data until we hit the end of the generator. This means we can't emit the end-of-stream flag until we've exhausted the generator. Hence the introduction of 0-sized end-of-stream frames. Differential Revision: https://phab.mercurial-scm.org/D4472

File last commit:

r36799:ffa3026d default
r39595:07b58266 default
Show More
test-atomictempfile.py
125 lines | 4.2 KiB | text/x-python | PythonLexer
/ tests / test-atomictempfile.py
from __future__ import absolute_import
import glob
import os
import shutil
import stat
import tempfile
import unittest
from mercurial import (
pycompat,
util,
)
atomictempfile = util.atomictempfile
if pycompat.ispy3:
xrange = range
class testatomictempfile(unittest.TestCase):
def setUp(self):
self._testdir = tempfile.mkdtemp(b'atomictempfiletest')
self._filename = os.path.join(self._testdir, b'testfilename')
def tearDown(self):
shutil.rmtree(self._testdir, True)
def testsimple(self):
file = atomictempfile(self._filename)
self.assertFalse(os.path.isfile(self._filename))
tempfilename = file._tempname
self.assertTrue(tempfilename in glob.glob(
os.path.join(self._testdir, b'.testfilename-*')))
file.write(b'argh\n')
file.close()
self.assertTrue(os.path.isfile(self._filename))
self.assertTrue(tempfilename not in glob.glob(
os.path.join(self._testdir, b'.testfilename-*')))
# discard() removes the temp file without making the write permanent
def testdiscard(self):
file = atomictempfile(self._filename)
(dir, basename) = os.path.split(file._tempname)
file.write(b'yo\n')
file.discard()
self.assertFalse(os.path.isfile(self._filename))
self.assertTrue(basename not in os.listdir(b'.'))
# if a programmer screws up and passes bad args to atomictempfile, they
# get a plain ordinary TypeError, not infinite recursion
def testoops(self):
with self.assertRaises(TypeError):
atomictempfile()
# checkambig=True avoids ambiguity of timestamp
def testcheckambig(self):
def atomicwrite(checkambig):
f = atomictempfile(self._filename, checkambig=checkambig)
f.write(b'FOO')
f.close()
# try some times, because reproduction of ambiguity depends on
# "filesystem time"
for i in xrange(5):
atomicwrite(False)
oldstat = os.stat(self._filename)
if oldstat[stat.ST_CTIME] != oldstat[stat.ST_MTIME]:
# subsequent changing never causes ambiguity
continue
repetition = 3
# repeat atomic write with checkambig=True, to examine
# whether st_mtime is advanced multiple times as expected
for j in xrange(repetition):
atomicwrite(True)
newstat = os.stat(self._filename)
if oldstat[stat.ST_CTIME] != newstat[stat.ST_CTIME]:
# timestamp ambiguity was naturally avoided while repetition
continue
# st_mtime should be advanced "repetition" times, because
# all atomicwrite() occurred at same time (in sec)
oldtime = (oldstat[stat.ST_MTIME] + repetition) & 0x7fffffff
self.assertTrue(newstat[stat.ST_MTIME] == oldtime)
# no more examination is needed, if assumption above is true
break
else:
# This platform seems too slow to examine anti-ambiguity
# of file timestamp (or test happened to be executed at
# bad timing). Exit silently in this case, because running
# on other faster platforms can detect problems
pass
def testread(self):
with open(self._filename, 'wb') as f:
f.write(b'foobar\n')
file = atomictempfile(self._filename, mode=b'rb')
self.assertTrue(file.read(), b'foobar\n')
file.discard()
def testcontextmanagersuccess(self):
"""When the context closes, the file is closed"""
with atomictempfile(b'foo') as f:
self.assertFalse(os.path.isfile(b'foo'))
f.write(b'argh\n')
self.assertTrue(os.path.isfile(b'foo'))
def testcontextmanagerfailure(self):
"""On exception, the file is discarded"""
try:
with atomictempfile(b'foo') as f:
self.assertFalse(os.path.isfile(b'foo'))
f.write(b'argh\n')
raise ValueError
except ValueError:
pass
self.assertFalse(os.path.isfile(b'foo'))
if __name__ == '__main__':
import silenttestrunner
silenttestrunner.main(__name__)