##// END OF EJS Templates
rust: implement conversion of RevlogError into HgError...
rust: implement conversion of RevlogError into HgError The conversion already exists in rhg, where we need to convert to CommandError. This commit moves it to hg core. This makes it easier to code some middleware where we need to carry around a type that represents any type of hg error (HgError).

File last commit:

r52153:c4f1a790 default
r53241:09a36de5 default
Show More
dagops.rs
313 lines | 10.1 KiB | application/rls-services+xml | RustLexer
// dagops.rs
//
// Copyright 2019 Georges Racinet <georges.racinet@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Miscellaneous DAG operations
//!
//! # Terminology
//! - By *relative heads* of a collection of revision numbers (`Revision`), we
//! mean those revisions that have no children among the collection.
//! - Similarly *relative roots* of a collection of `Revision`, we mean those
//! whose parents, if any, don't belong to the collection.
use bitvec::slice::BitSlice;
use super::{Graph, GraphError, Revision, NULL_REVISION};
use crate::{ancestors::AncestorsIterator, BaseRevision};
use std::collections::{BTreeSet, HashSet};
fn remove_parents<S: std::hash::BuildHasher>(
graph: &impl Graph,
rev: Revision,
set: &mut HashSet<Revision, S>,
) -> Result<(), GraphError> {
for parent in graph.parents(rev)?.iter() {
if *parent != NULL_REVISION {
set.remove(parent);
}
}
Ok(())
}
/// Relative heads out of some revisions, passed as an iterator.
///
/// These heads are defined as those revisions that have no children
/// among those emitted by the iterator.
///
/// # Performance notes
/// Internally, this clones the iterator, and builds a `HashSet` out of it.
///
/// This function takes an `Iterator` instead of `impl IntoIterator` to
/// guarantee that cloning the iterator doesn't result in cloning the full
/// construct it comes from.
pub fn heads<'a>(
graph: &impl Graph,
iter_revs: impl Clone + Iterator<Item = &'a Revision>,
) -> Result<HashSet<Revision>, GraphError> {
let mut heads: HashSet<Revision> = iter_revs.clone().cloned().collect();
heads.remove(&NULL_REVISION);
for rev in iter_revs {
if *rev != NULL_REVISION {
remove_parents(graph, *rev, &mut heads)?;
}
}
Ok(heads)
}
/// Retain in `revs` only its relative heads.
///
/// This is an in-place operation, so that control of the incoming
/// set is left to the caller.
/// - a direct Python binding would probably need to build its own `HashSet`
/// from an incoming iterable, even if its sole purpose is to extract the
/// heads.
/// - a Rust caller can decide whether cloning beforehand is appropriate
///
/// # Performance notes
/// Internally, this function will store a full copy of `revs` in a `Vec`.
pub fn retain_heads<S: std::hash::BuildHasher>(
graph: &impl Graph,
revs: &mut HashSet<Revision, S>,
) -> Result<(), GraphError> {
revs.remove(&NULL_REVISION);
// we need to construct an iterable copy of revs to avoid itering while
// mutating
let as_vec: Vec<Revision> = revs.iter().cloned().collect();
for rev in as_vec {
if rev != NULL_REVISION {
remove_parents(graph, rev, revs)?;
}
}
Ok(())
}
/// Optimized version of `retain_heads` that expects an zeroed bitvec of the
/// size of the graph, to act as a faster but less space-efficient `HashSet`.
///
/// # Panics
///
/// Can panic if `not_heads` is shorten than the length of graph.
pub fn retain_heads_fast(
graph: &impl Graph,
not_heads: &mut BitSlice,
filtered_revs: &HashSet<Revision>,
) -> Result<(), GraphError> {
for idx in (0..not_heads.len()).rev() {
let rev = Revision(idx as BaseRevision);
if !not_heads[idx] && filtered_revs.contains(&rev) {
not_heads.get_mut(idx).unwrap().commit(true);
continue;
}
for parent in graph.parents(rev)?.iter() {
if *parent != NULL_REVISION {
not_heads.get_mut(parent.0 as usize).unwrap().commit(true);
}
}
}
Ok(())
}
/// Roots of `revs`, passed as a `HashSet`
///
/// They are returned in arbitrary order
pub fn roots<G: Graph, S: std::hash::BuildHasher>(
graph: &G,
revs: &HashSet<Revision, S>,
) -> Result<Vec<Revision>, GraphError> {
let mut roots: Vec<Revision> = Vec::new();
for rev in revs {
if graph
.parents(*rev)?
.iter()
.filter(|p| **p != NULL_REVISION)
.all(|p| !revs.contains(p))
{
roots.push(*rev);
}
}
Ok(roots)
}
/// Compute the topological range between two collections of revisions
///
/// This is equivalent to the revset `<roots>::<heads>`.
///
/// Currently, the given `Graph` has to implement `Clone`, which means
/// actually cloning just a reference-counted Python pointer if
/// it's passed over through `rust-cpython`. This is due to the internal
/// use of `AncestorsIterator`
///
/// # Algorithmic details
///
/// This is a two-pass swipe inspired from what `reachableroots2` from
/// `mercurial.cext.parsers` does to obtain the same results.
///
/// - first, we climb up the DAG from `heads` in topological order, keeping
/// them in the vector `heads_ancestors` vector, and adding any element of
/// `roots` we find among them to the resulting range.
/// - Then, we iterate on that recorded vector so that a revision is always
/// emitted after its parents and add all revisions whose parents are already
/// in the range to the results.
///
/// # Performance notes
///
/// The main difference with the C implementation is that
/// the latter uses a flat array with bit flags, instead of complex structures
/// like `HashSet`, making it faster in most scenarios. In theory, it's
/// possible that the present implementation could be more memory efficient
/// for very large repositories with many branches.
pub fn range(
graph: &(impl Graph + Clone),
roots: impl IntoIterator<Item = Revision>,
heads: impl IntoIterator<Item = Revision>,
) -> Result<BTreeSet<Revision>, GraphError> {
let mut range = BTreeSet::new();
let roots: HashSet<Revision> = roots.into_iter().collect();
let min_root: Revision = match roots.iter().cloned().min() {
None => {
return Ok(range);
}
Some(r) => r,
};
// Internally, AncestorsIterator currently maintains a `HashSet`
// of all seen revision, which is also what we record, albeit in an ordered
// way. There's room for improvement on this duplication.
let ait = AncestorsIterator::new(graph.clone(), heads, min_root, true)?;
let mut heads_ancestors: Vec<Revision> = Vec::new();
for revres in ait {
let rev = revres?;
if roots.contains(&rev) {
range.insert(rev);
}
heads_ancestors.push(rev);
}
for rev in heads_ancestors.into_iter().rev() {
for parent in graph.parents(rev)?.iter() {
if *parent != NULL_REVISION && range.contains(parent) {
range.insert(rev);
}
}
}
Ok(range)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{testing::SampleGraph, BaseRevision};
/// Apply `retain_heads()` to the given slice and return as a sorted `Vec`
fn retain_heads_sorted(
graph: &impl Graph,
revs: &[BaseRevision],
) -> Result<Vec<Revision>, GraphError> {
let mut revs: HashSet<Revision> =
revs.iter().cloned().map(Revision).collect();
retain_heads(graph, &mut revs)?;
let mut as_vec: Vec<Revision> = revs.iter().cloned().collect();
as_vec.sort_unstable();
Ok(as_vec)
}
#[test]
fn test_retain_heads() -> Result<(), GraphError> {
assert_eq!(retain_heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
assert_eq!(
retain_heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![1, 6, 12]
);
assert_eq!(
retain_heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![3, 5, 8, 9]
);
Ok(())
}
/// Apply `heads()` to the given slice and return as a sorted `Vec`
fn heads_sorted(
graph: &impl Graph,
revs: &[BaseRevision],
) -> Result<Vec<Revision>, GraphError> {
let iter_revs: Vec<_> = revs.iter().cloned().map(Revision).collect();
let heads = heads(graph, iter_revs.iter())?;
let mut as_vec: Vec<Revision> = heads.iter().cloned().collect();
as_vec.sort_unstable();
Ok(as_vec)
}
#[test]
fn test_heads() -> Result<(), GraphError> {
assert_eq!(heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
assert_eq!(
heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![1, 6, 12]
);
assert_eq!(
heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![3, 5, 8, 9]
);
Ok(())
}
/// Apply `roots()` and sort the result for easier comparison
fn roots_sorted(
graph: &impl Graph,
revs: &[BaseRevision],
) -> Result<Vec<Revision>, GraphError> {
let set: HashSet<_> = revs.iter().cloned().map(Revision).collect();
let mut as_vec = roots(graph, &set)?;
as_vec.sort_unstable();
Ok(as_vec)
}
#[test]
fn test_roots() -> Result<(), GraphError> {
assert_eq!(roots_sorted(&SampleGraph, &[4, 5, 6])?, vec![4]);
assert_eq!(
roots_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![0, 4, 12]
);
assert_eq!(
roots_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![1, 8]
);
Ok(())
}
/// Apply `range()` and convert the result into a Vec for easier comparison
fn range_vec(
graph: impl Graph + Clone,
roots: &[BaseRevision],
heads: &[BaseRevision],
) -> Result<Vec<Revision>, GraphError> {
range(
&graph,
roots.iter().cloned().map(Revision),
heads.iter().cloned().map(Revision),
)
.map(|bs| bs.into_iter().collect())
}
#[test]
fn test_range() -> Result<(), GraphError> {
assert_eq!(range_vec(SampleGraph, &[0], &[4])?, vec![0, 1, 2, 4]);
assert_eq!(
range_vec(SampleGraph, &[0], &[8])?,
Vec::<Revision>::new()
);
assert_eq!(
range_vec(SampleGraph, &[5, 6], &[10, 11, 13])?,
vec![5, 10]
);
assert_eq!(
range_vec(SampleGraph, &[5, 6], &[10, 12])?,
vec![5, 6, 9, 10, 12]
);
Ok(())
}
}