##// END OF EJS Templates
interfaces: add the optional `bdiff.xdiffblocks()` method...
interfaces: add the optional `bdiff.xdiffblocks()` method PyCharm flagged where this was called on the protocol class in `mdiff.py` in the previous commit, but pytype completely missed it. PyCharm is correct here, but I'm committing this separately to highlight this potential problem- some of the implementations don't implement _all_ of the methods the others do, and there's not a great way to indicate on a protocol class that a method or attribute is optional- that's kinda the opposite of what static typing is about. Making the method an `Optional[Callable]` attribute works here, and keeps both PyCharm and pytype happy, and the generated `mdiff.pyi` and `modules.pyi` look reasonable. We might be getting a little lucky, because the method isn't invoked directly- it is returned from another method that selects which block function to use. Except since it is declared on the protocol class, every module needs this attribute (in theory, but in practice this doesn't seem to be checked), so the check for it on the module has to change from `hasattr()` to `getattr(..., None)`. We defer defining the optional attrs to the type checking phase as an extra precaution- that way it isn't an attr with a `None` value at runtime if someone is still using `hasattr()`. As to why pytype missed this, I have no clue. The generated `mdiff.pyi` even has the global variable typed as `bdiff: intmod.BDiff`, so uses of it really should comply with what is on the class, protocol class or not.

File last commit:

r52756:f4733654 default
r52827:09f3a679 default
Show More
lsprofcalltree.py
96 lines | 2.7 KiB | text/x-python | PythonLexer
"""
lsprofcalltree.py - lsprof output which is readable by kcachegrind
Authors:
* David Allouche <david <at> allouche.net>
* Jp Calderone & Itamar Shtull-Trauring
* Johan Dahlin
This software may be used and distributed according to the terms
of the GNU General Public License, incorporated herein by reference.
"""
from __future__ import annotations
from . import pycompat
def label(code):
if isinstance(code, str):
# built-in functions ('~' sorts at the end)
return b'~' + pycompat.sysbytes(code)
else:
return b'%s %s:%d' % (
pycompat.sysbytes(code.co_name),
pycompat.sysbytes(code.co_filename),
code.co_firstlineno,
)
class KCacheGrind:
def __init__(self, profiler):
self.data = profiler.getstats()
self.out_file = None
def output(self, out_file):
self.out_file = out_file
out_file.write(b'events: Ticks\n')
self._print_summary()
for entry in self.data:
self._entry(entry)
def _print_summary(self):
max_cost = 0
for entry in self.data:
totaltime = int(entry.totaltime * 1000)
max_cost = max(max_cost, totaltime)
self.out_file.write(b'summary: %d\n' % max_cost)
def _entry(self, entry):
out_file = self.out_file
code = entry.code
if isinstance(code, str):
out_file.write(b'fi=~\n')
else:
out_file.write(b'fi=%s\n' % pycompat.sysbytes(code.co_filename))
out_file.write(b'fn=%s\n' % label(code))
inlinetime = int(entry.inlinetime * 1000)
if isinstance(code, str):
out_file.write(b'0 %d\n' % inlinetime)
else:
out_file.write(b'%d %d\n' % (code.co_firstlineno, inlinetime))
# recursive calls are counted in entry.calls
if entry.calls:
calls = entry.calls
else:
calls = []
if isinstance(code, str):
lineno = 0
else:
lineno = code.co_firstlineno
for subentry in calls:
self._subentry(lineno, subentry)
out_file.write(b'\n')
def _subentry(self, lineno, subentry):
out_file = self.out_file
code = subentry.code
out_file.write(b'cfn=%s\n' % label(code))
if isinstance(code, str):
out_file.write(b'cfi=~\n')
out_file.write(b'calls=%d 0\n' % subentry.callcount)
else:
out_file.write(b'cfi=%s\n' % pycompat.sysbytes(code.co_filename))
out_file.write(
b'calls=%d %d\n' % (subentry.callcount, code.co_firstlineno)
)
totaltime = int(subentry.totaltime * 1000)
out_file.write(b'%d %d\n' % (lineno, totaltime))