##// END OF EJS Templates
interfaces: add the optional `bdiff.xdiffblocks()` method...
interfaces: add the optional `bdiff.xdiffblocks()` method PyCharm flagged where this was called on the protocol class in `mdiff.py` in the previous commit, but pytype completely missed it. PyCharm is correct here, but I'm committing this separately to highlight this potential problem- some of the implementations don't implement _all_ of the methods the others do, and there's not a great way to indicate on a protocol class that a method or attribute is optional- that's kinda the opposite of what static typing is about. Making the method an `Optional[Callable]` attribute works here, and keeps both PyCharm and pytype happy, and the generated `mdiff.pyi` and `modules.pyi` look reasonable. We might be getting a little lucky, because the method isn't invoked directly- it is returned from another method that selects which block function to use. Except since it is declared on the protocol class, every module needs this attribute (in theory, but in practice this doesn't seem to be checked), so the check for it on the module has to change from `hasattr()` to `getattr(..., None)`. We defer defining the optional attrs to the type checking phase as an extra precaution- that way it isn't an attr with a `None` value at runtime if someone is still using `hasattr()`. As to why pytype missed this, I have no clue. The generated `mdiff.pyi` even has the global variable typed as `bdiff: intmod.BDiff`, so uses of it really should comply with what is on the class, protocol class or not.

File last commit:

r50538:e1c586b9 default
r52827:09f3a679 default
Show More
validators.pyi
80 lines | 2.3 KiB | text/x-python | PythonLexer
from typing import (
Any,
AnyStr,
Callable,
Container,
ContextManager,
Iterable,
List,
Mapping,
Match,
Optional,
Pattern,
Tuple,
Type,
TypeVar,
Union,
overload,
)
from . import _ValidatorType
from . import _ValidatorArgType
_T = TypeVar("_T")
_T1 = TypeVar("_T1")
_T2 = TypeVar("_T2")
_T3 = TypeVar("_T3")
_I = TypeVar("_I", bound=Iterable)
_K = TypeVar("_K")
_V = TypeVar("_V")
_M = TypeVar("_M", bound=Mapping)
def set_disabled(run: bool) -> None: ...
def get_disabled() -> bool: ...
def disabled() -> ContextManager[None]: ...
# To be more precise on instance_of use some overloads.
# If there are more than 3 items in the tuple then we fall back to Any
@overload
def instance_of(type: Type[_T]) -> _ValidatorType[_T]: ...
@overload
def instance_of(type: Tuple[Type[_T]]) -> _ValidatorType[_T]: ...
@overload
def instance_of(
type: Tuple[Type[_T1], Type[_T2]]
) -> _ValidatorType[Union[_T1, _T2]]: ...
@overload
def instance_of(
type: Tuple[Type[_T1], Type[_T2], Type[_T3]]
) -> _ValidatorType[Union[_T1, _T2, _T3]]: ...
@overload
def instance_of(type: Tuple[type, ...]) -> _ValidatorType[Any]: ...
def provides(interface: Any) -> _ValidatorType[Any]: ...
def optional(
validator: Union[_ValidatorType[_T], List[_ValidatorType[_T]]]
) -> _ValidatorType[Optional[_T]]: ...
def in_(options: Container[_T]) -> _ValidatorType[_T]: ...
def and_(*validators: _ValidatorType[_T]) -> _ValidatorType[_T]: ...
def matches_re(
regex: Union[Pattern[AnyStr], AnyStr],
flags: int = ...,
func: Optional[
Callable[[AnyStr, AnyStr, int], Optional[Match[AnyStr]]]
] = ...,
) -> _ValidatorType[AnyStr]: ...
def deep_iterable(
member_validator: _ValidatorArgType[_T],
iterable_validator: Optional[_ValidatorType[_I]] = ...,
) -> _ValidatorType[_I]: ...
def deep_mapping(
key_validator: _ValidatorType[_K],
value_validator: _ValidatorType[_V],
mapping_validator: Optional[_ValidatorType[_M]] = ...,
) -> _ValidatorType[_M]: ...
def is_callable() -> _ValidatorType[_T]: ...
def lt(val: _T) -> _ValidatorType[_T]: ...
def le(val: _T) -> _ValidatorType[_T]: ...
def ge(val: _T) -> _ValidatorType[_T]: ...
def gt(val: _T) -> _ValidatorType[_T]: ...
def max_len(length: int) -> _ValidatorType[_T]: ...
def min_len(length: int) -> _ValidatorType[_T]: ...