##// END OF EJS Templates
runtests: add a function to test if IPv6 is available...
runtests: add a function to test if IPv6 is available Previously, checkportisavailable returns True if the port is free either on IPv4 or IPv6, but the hg server only uses IPv4 by default. That leads to issues when IPv4 port is not free but the IPv6 one is. To address that, run-tests should stick with either IPv4 or IPv6. This patch adds a function similar to checkportisavailable to test if IPv6 is available, and assigns the result to a variable. The new function was tested in a Linux system script with the following steps: 1. Run "ip addr del ::1/128 dev lo" to delete lo's IPv6 address, Confirm checkipv6available() returns False. 2. Run "ip addr add ::1/128 dev lo" to add back lo's IPv6 address. Confirm checkipv6available() returns True. 3. Start a web server taking the 8000 port. Confirm checkipv6available(8000) is still True.

File last commit:

r30895:c32454d6 default
r30984:15f9084a default
Show More
compressiondict.c
248 lines | 7.8 KiB | text/x-c | CLexer
/**
* Copyright (c) 2016-present, Gregory Szorc
* All rights reserved.
*
* This software may be modified and distributed under the terms
* of the BSD license. See the LICENSE file for details.
*/
#include "python-zstandard.h"
extern PyObject* ZstdError;
ZstdCompressionDict* train_dictionary(PyObject* self, PyObject* args, PyObject* kwargs) {
static char *kwlist[] = { "dict_size", "samples", "parameters", NULL };
size_t capacity;
PyObject* samples;
Py_ssize_t samplesLen;
PyObject* parameters = NULL;
ZDICT_params_t zparams;
Py_ssize_t sampleIndex;
Py_ssize_t sampleSize;
PyObject* sampleItem;
size_t zresult;
void* sampleBuffer;
void* sampleOffset;
size_t samplesSize = 0;
size_t* sampleSizes;
void* dict;
ZstdCompressionDict* result;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "nO!|O!:train_dictionary",
kwlist,
&capacity,
&PyList_Type, &samples,
(PyObject*)&DictParametersType, &parameters)) {
return NULL;
}
/* Validate parameters first since it is easiest. */
zparams.selectivityLevel = 0;
zparams.compressionLevel = 0;
zparams.notificationLevel = 0;
zparams.dictID = 0;
zparams.reserved[0] = 0;
zparams.reserved[1] = 0;
if (parameters) {
/* TODO validate data ranges */
zparams.selectivityLevel = PyLong_AsUnsignedLong(PyTuple_GetItem(parameters, 0));
zparams.compressionLevel = PyLong_AsLong(PyTuple_GetItem(parameters, 1));
zparams.notificationLevel = PyLong_AsUnsignedLong(PyTuple_GetItem(parameters, 2));
zparams.dictID = PyLong_AsUnsignedLong(PyTuple_GetItem(parameters, 3));
}
/* Figure out the size of the raw samples */
samplesLen = PyList_Size(samples);
for (sampleIndex = 0; sampleIndex < samplesLen; sampleIndex++) {
sampleItem = PyList_GetItem(samples, sampleIndex);
if (!PyBytes_Check(sampleItem)) {
PyErr_SetString(PyExc_ValueError, "samples must be bytes");
return NULL;
}
samplesSize += PyBytes_GET_SIZE(sampleItem);
}
/* Now that we know the total size of the raw simples, we can allocate
a buffer for the raw data */
sampleBuffer = PyMem_Malloc(samplesSize);
if (!sampleBuffer) {
PyErr_NoMemory();
return NULL;
}
sampleSizes = PyMem_Malloc(samplesLen * sizeof(size_t));
if (!sampleSizes) {
PyMem_Free(sampleBuffer);
PyErr_NoMemory();
return NULL;
}
sampleOffset = sampleBuffer;
/* Now iterate again and assemble the samples in the buffer */
for (sampleIndex = 0; sampleIndex < samplesLen; sampleIndex++) {
sampleItem = PyList_GetItem(samples, sampleIndex);
sampleSize = PyBytes_GET_SIZE(sampleItem);
sampleSizes[sampleIndex] = sampleSize;
memcpy(sampleOffset, PyBytes_AS_STRING(sampleItem), sampleSize);
sampleOffset = (char*)sampleOffset + sampleSize;
}
dict = PyMem_Malloc(capacity);
if (!dict) {
PyMem_Free(sampleSizes);
PyMem_Free(sampleBuffer);
PyErr_NoMemory();
return NULL;
}
zresult = ZDICT_trainFromBuffer_advanced(dict, capacity,
sampleBuffer, sampleSizes, (unsigned int)samplesLen,
zparams);
if (ZDICT_isError(zresult)) {
PyErr_Format(ZstdError, "Cannot train dict: %s", ZDICT_getErrorName(zresult));
PyMem_Free(dict);
PyMem_Free(sampleSizes);
PyMem_Free(sampleBuffer);
return NULL;
}
result = PyObject_New(ZstdCompressionDict, &ZstdCompressionDictType);
if (!result) {
return NULL;
}
result->dictData = dict;
result->dictSize = zresult;
return result;
}
PyDoc_STRVAR(ZstdCompressionDict__doc__,
"ZstdCompressionDict(data) - Represents a computed compression dictionary\n"
"\n"
"This type holds the results of a computed Zstandard compression dictionary.\n"
"Instances are obtained by calling ``train_dictionary()`` or by passing bytes\n"
"obtained from another source into the constructor.\n"
);
static int ZstdCompressionDict_init(ZstdCompressionDict* self, PyObject* args) {
const char* source;
Py_ssize_t sourceSize;
self->dictData = NULL;
self->dictSize = 0;
#if PY_MAJOR_VERSION >= 3
if (!PyArg_ParseTuple(args, "y#:ZstdCompressionDict",
#else
if (!PyArg_ParseTuple(args, "s#:ZstdCompressionDict",
#endif
&source, &sourceSize)) {
return -1;
}
self->dictData = PyMem_Malloc(sourceSize);
if (!self->dictData) {
PyErr_NoMemory();
return -1;
}
memcpy(self->dictData, source, sourceSize);
self->dictSize = sourceSize;
return 0;
}
static void ZstdCompressionDict_dealloc(ZstdCompressionDict* self) {
if (self->dictData) {
PyMem_Free(self->dictData);
self->dictData = NULL;
}
PyObject_Del(self);
}
static PyObject* ZstdCompressionDict_dict_id(ZstdCompressionDict* self) {
unsigned dictID = ZDICT_getDictID(self->dictData, self->dictSize);
return PyLong_FromLong(dictID);
}
static PyObject* ZstdCompressionDict_as_bytes(ZstdCompressionDict* self) {
return PyBytes_FromStringAndSize(self->dictData, self->dictSize);
}
static PyMethodDef ZstdCompressionDict_methods[] = {
{ "dict_id", (PyCFunction)ZstdCompressionDict_dict_id, METH_NOARGS,
PyDoc_STR("dict_id() -- obtain the numeric dictionary ID") },
{ "as_bytes", (PyCFunction)ZstdCompressionDict_as_bytes, METH_NOARGS,
PyDoc_STR("as_bytes() -- obtain the raw bytes constituting the dictionary data") },
{ NULL, NULL }
};
static Py_ssize_t ZstdCompressionDict_length(ZstdCompressionDict* self) {
return self->dictSize;
}
static PySequenceMethods ZstdCompressionDict_sq = {
(lenfunc)ZstdCompressionDict_length, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
0, /* sq_item */
0, /* sq_ass_item */
0, /* sq_contains */
0, /* sq_inplace_concat */
0 /* sq_inplace_repeat */
};
PyTypeObject ZstdCompressionDictType = {
PyVarObject_HEAD_INIT(NULL, 0)
"zstd.ZstdCompressionDict", /* tp_name */
sizeof(ZstdCompressionDict), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)ZstdCompressionDict_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
&ZstdCompressionDict_sq, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
ZstdCompressionDict__doc__, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
ZstdCompressionDict_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)ZstdCompressionDict_init, /* tp_init */
0, /* tp_alloc */
PyType_GenericNew, /* tp_new */
};
void compressiondict_module_init(PyObject* mod) {
Py_TYPE(&ZstdCompressionDictType) = &PyType_Type;
if (PyType_Ready(&ZstdCompressionDictType) < 0) {
return;
}
Py_INCREF((PyObject*)&ZstdCompressionDictType);
PyModule_AddObject(mod, "ZstdCompressionDict",
(PyObject*)&ZstdCompressionDictType);
}