##// END OF EJS Templates
rust: factorized testing Graphs...
rust: factorized testing Graphs it will useful to use these outside of `ancestors`, too. Differential Revision: https://phab.mercurial-scm.org/D5579

File last commit:

r41277:168041fa default
r41277:168041fa default
Show More
ancestors.rs
754 lines | 24.7 KiB | application/rls-services+xml | RustLexer
// ancestors.rs
//
// Copyright 2018 Georges Racinet <gracinet@anybox.fr>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Rust versions of generic DAG ancestors algorithms for Mercurial
use super::{Graph, GraphError, Revision, NULL_REVISION};
use std::cmp::max;
use std::collections::{BinaryHeap, HashSet};
/// Iterator over the ancestors of a given list of revisions
/// This is a generic type, defined and implemented for any Graph, so that
/// it's easy to
///
/// - unit test in pure Rust
/// - bind to main Mercurial code, potentially in several ways and have these
/// bindings evolve over time
pub struct AncestorsIterator<G: Graph> {
graph: G,
visit: BinaryHeap<Revision>,
seen: HashSet<Revision>,
stoprev: Revision,
}
/// Lazy ancestors set, backed by AncestorsIterator
pub struct LazyAncestors<G: Graph + Clone> {
graph: G,
containsiter: AncestorsIterator<G>,
initrevs: Vec<Revision>,
stoprev: Revision,
inclusive: bool,
}
pub struct MissingAncestors<G: Graph> {
graph: G,
bases: HashSet<Revision>,
}
impl<G: Graph> AncestorsIterator<G> {
/// Constructor.
///
/// if `inclusive` is true, then the init revisions are emitted in
/// particular, otherwise iteration starts from their parents.
pub fn new(
graph: G,
initrevs: impl IntoIterator<Item = Revision>,
stoprev: Revision,
inclusive: bool,
) -> Result<Self, GraphError> {
let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev);
if inclusive {
let visit: BinaryHeap<Revision> = filtered_initrevs.collect();
let seen = visit.iter().map(|&x| x).collect();
return Ok(AncestorsIterator {
visit: visit,
seen: seen,
stoprev: stoprev,
graph: graph,
});
}
let mut this = AncestorsIterator {
visit: BinaryHeap::new(),
seen: HashSet::new(),
stoprev: stoprev,
graph: graph,
};
this.seen.insert(NULL_REVISION);
for rev in filtered_initrevs {
for parent in this.graph.parents(rev)?.iter().cloned() {
this.conditionally_push_rev(parent);
}
}
Ok(this)
}
#[inline]
fn conditionally_push_rev(&mut self, rev: Revision) {
if self.stoprev <= rev && !self.seen.contains(&rev) {
self.seen.insert(rev);
self.visit.push(rev);
}
}
/// Consumes partially the iterator to tell if the given target
/// revision
/// is in the ancestors it emits.
/// This is meant for iterators actually dedicated to that kind of
/// purpose
pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> {
if self.seen.contains(&target) && target != NULL_REVISION {
return Ok(true);
}
for item in self {
let rev = item?;
if rev == target {
return Ok(true);
}
if rev < target {
return Ok(false);
}
}
Ok(false)
}
pub fn peek(&self) -> Option<Revision> {
self.visit.peek().map(|&r| r)
}
/// Tell if the iterator is about an empty set
///
/// The result does not depend whether the iterator has been consumed
/// or not.
/// This is mostly meant for iterators backing a lazy ancestors set
pub fn is_empty(&self) -> bool {
if self.visit.len() > 0 {
return false;
}
if self.seen.len() > 1 {
return false;
}
// at this point, the seen set is at most a singleton.
// If not `self.inclusive`, it's still possible that it has only
// the null revision
self.seen.is_empty() || self.seen.contains(&NULL_REVISION)
}
}
/// Main implementation for the iterator
///
/// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py`
/// with a few non crucial differences:
///
/// - there's no filtering of invalid parent revisions. Actually, it should be
/// consistent and more efficient to filter them from the end caller.
/// - we don't have the optimization for adjacent revisions (i.e., the case
/// where `p1 == rev - 1`), because it amounts to update the first element of
/// the heap without sifting, which Rust's BinaryHeap doesn't let us do.
/// - we save a few pushes by comparing with `stoprev` before pushing
impl<G: Graph> Iterator for AncestorsIterator<G> {
type Item = Result<Revision, GraphError>;
fn next(&mut self) -> Option<Self::Item> {
let current = match self.visit.peek() {
None => {
return None;
}
Some(c) => *c,
};
let [p1, p2] = match self.graph.parents(current) {
Ok(ps) => ps,
Err(e) => return Some(Err(e)),
};
if p1 < self.stoprev || self.seen.contains(&p1) {
self.visit.pop();
} else {
*(self.visit.peek_mut().unwrap()) = p1;
self.seen.insert(p1);
};
self.conditionally_push_rev(p2);
Some(Ok(current))
}
}
impl<G: Graph + Clone> LazyAncestors<G> {
pub fn new(
graph: G,
initrevs: impl IntoIterator<Item = Revision>,
stoprev: Revision,
inclusive: bool,
) -> Result<Self, GraphError> {
let v: Vec<Revision> = initrevs.into_iter().collect();
Ok(LazyAncestors {
graph: graph.clone(),
containsiter: AncestorsIterator::new(
graph,
v.iter().cloned(),
stoprev,
inclusive,
)?,
initrevs: v,
stoprev: stoprev,
inclusive: inclusive,
})
}
pub fn contains(&mut self, rev: Revision) -> Result<bool, GraphError> {
self.containsiter.contains(rev)
}
pub fn is_empty(&self) -> bool {
self.containsiter.is_empty()
}
pub fn iter(&self) -> AncestorsIterator<G> {
// the arguments being the same as for self.containsiter, we know
// for sure that AncestorsIterator constructor can't fail
AncestorsIterator::new(
self.graph.clone(),
self.initrevs.iter().cloned(),
self.stoprev,
self.inclusive,
)
.unwrap()
}
}
impl<G: Graph> MissingAncestors<G> {
pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self {
let mut bases: HashSet<Revision> = bases.into_iter().collect();
if bases.is_empty() {
bases.insert(NULL_REVISION);
}
MissingAncestors { graph, bases }
}
pub fn has_bases(&self) -> bool {
self.bases.iter().any(|&b| b != NULL_REVISION)
}
/// Return a reference to current bases.
///
/// This is useful in unit tests, but also setdiscovery.py does
/// read the bases attribute of a ancestor.missingancestors instance.
pub fn get_bases<'a>(&'a self) -> &'a HashSet<Revision> {
&self.bases
}
pub fn add_bases(
&mut self,
new_bases: impl IntoIterator<Item = Revision>,
) {
self.bases.extend(new_bases);
}
/// Remove all ancestors of self.bases from the revs set (in place)
pub fn remove_ancestors_from(
&mut self,
revs: &mut HashSet<Revision>,
) -> Result<(), GraphError> {
revs.retain(|r| !self.bases.contains(r));
// the null revision is always an ancestor
revs.remove(&NULL_REVISION);
if revs.is_empty() {
return Ok(());
}
// anything in revs > start is definitely not an ancestor of bases
// revs <= start need to be investigated
// TODO optim: if a missingancestors is to be used several times,
// we shouldn't need to iterate each time on bases
let start = match self.bases.iter().cloned().max() {
Some(m) => m,
None => {
// bases is empty (shouldn't happen, but let's be safe)
return Ok(());
}
};
// whatever happens, we'll keep at least keepcount of them
// knowing this gives us a earlier stop condition than
// going all the way to the root
let keepcount = revs.iter().filter(|r| **r > start).count();
let mut curr = start;
while curr != NULL_REVISION && revs.len() > keepcount {
if self.bases.contains(&curr) {
revs.remove(&curr);
self.add_parents(curr)?;
}
curr -= 1;
}
Ok(())
}
/// Add rev's parents to self.bases
#[inline]
fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> {
// No need to bother the set with inserting NULL_REVISION over and
// over
for p in self.graph.parents(rev)?.iter().cloned() {
if p != NULL_REVISION {
self.bases.insert(p);
}
}
Ok(())
}
/// Return all the ancestors of revs that are not ancestors of self.bases
///
/// This may include elements from revs.
///
/// Equivalent to the revset (::revs - ::self.bases). Revs are returned in
/// revision number order, which is a topological order.
pub fn missing_ancestors(
&mut self,
revs: impl IntoIterator<Item = Revision>,
) -> Result<Vec<Revision>, GraphError> {
// just for convenience and comparison with Python version
let bases_visit = &mut self.bases;
let mut revs: HashSet<Revision> = revs
.into_iter()
.filter(|r| !bases_visit.contains(r))
.collect();
let revs_visit = &mut revs;
let mut both_visit: HashSet<Revision> =
revs_visit.intersection(&bases_visit).cloned().collect();
if revs_visit.is_empty() {
return Ok(Vec::new());
}
let max_bases =
bases_visit.iter().cloned().max().unwrap_or(NULL_REVISION);
let max_revs =
revs_visit.iter().cloned().max().unwrap_or(NULL_REVISION);
let start = max(max_bases, max_revs);
// TODO heuristics for with_capacity()?
let mut missing: Vec<Revision> = Vec::new();
for curr in (0..=start).rev() {
if revs_visit.is_empty() {
break;
}
if both_visit.contains(&curr) {
// curr's parents might have made it into revs_visit through
// another path
// TODO optim: Rust's HashSet.remove returns a boolean telling
// if it happened. This will spare us one set lookup
both_visit.remove(&curr);
for p in self.graph.parents(curr)?.iter().cloned() {
if p == NULL_REVISION {
continue;
}
revs_visit.remove(&p);
bases_visit.insert(p);
both_visit.insert(p);
}
} else if revs_visit.remove(&curr) {
missing.push(curr);
for p in self.graph.parents(curr)?.iter().cloned() {
if p == NULL_REVISION {
continue;
}
if bases_visit.contains(&p) || both_visit.contains(&p) {
// p is an ancestor of revs_visit, and is implicitly
// in bases_visit, which means p is ::revs & ::bases.
// TODO optim: hence if bothvisit, we look up twice
revs_visit.remove(&p);
bases_visit.insert(p);
both_visit.insert(p);
} else {
// visit later
revs_visit.insert(p);
}
}
} else if bases_visit.contains(&curr) {
for p in self.graph.parents(curr)?.iter().cloned() {
if p == NULL_REVISION {
continue;
}
if revs_visit.contains(&p) || both_visit.contains(&p) {
// p is an ancestor of bases_visit, and is implicitly
// in revs_visit, which means p is ::revs & ::bases.
// TODO optim: hence if bothvisit, we look up twice
revs_visit.remove(&p);
bases_visit.insert(p);
both_visit.insert(p);
} else {
bases_visit.insert(p);
}
}
}
}
missing.reverse();
Ok(missing)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::testing::{SampleGraph, VecGraph};
use std::iter::FromIterator;
fn list_ancestors<G: Graph>(
graph: G,
initrevs: Vec<Revision>,
stoprev: Revision,
inclusive: bool,
) -> Vec<Revision> {
AncestorsIterator::new(graph, initrevs, stoprev, inclusive)
.unwrap()
.map(|res| res.unwrap())
.collect()
}
#[test]
/// Same tests as test-ancestor.py, without membership
/// (see also test-ancestor.py.out)
fn test_list_ancestor() {
assert_eq!(list_ancestors(SampleGraph, vec![], 0, false), vec![]);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 0, false),
vec![8, 7, 4, 3, 2, 1, 0]
);
assert_eq!(
list_ancestors(SampleGraph, vec![1, 3], 0, false),
vec![1, 0]
);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 0, true),
vec![13, 11, 8, 7, 4, 3, 2, 1, 0]
);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 6, false),
vec![8, 7]
);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 6, true),
vec![13, 11, 8, 7]
);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 11, true),
vec![13, 11]
);
assert_eq!(
list_ancestors(SampleGraph, vec![11, 13], 12, true),
vec![13]
);
assert_eq!(
list_ancestors(SampleGraph, vec![10, 1], 0, true),
vec![10, 5, 4, 2, 1, 0]
);
}
#[test]
/// Corner case that's not directly in test-ancestors.py, but
/// that happens quite often, as demonstrated by running the whole
/// suite.
/// For instance, run tests/test-obsolete-checkheads.t
fn test_nullrev_input() {
let mut iter =
AncestorsIterator::new(SampleGraph, vec![-1], 0, false).unwrap();
assert_eq!(iter.next(), None)
}
#[test]
fn test_contains() {
let mut lazy =
AncestorsIterator::new(SampleGraph, vec![10, 1], 0, true).unwrap();
assert!(lazy.contains(1).unwrap());
assert!(!lazy.contains(3).unwrap());
let mut lazy =
AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap();
assert!(!lazy.contains(NULL_REVISION).unwrap());
}
#[test]
fn test_peek() {
let mut iter =
AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap();
// peek() gives us the next value
assert_eq!(iter.peek(), Some(10));
// but it's not been consumed
assert_eq!(iter.next(), Some(Ok(10)));
// and iteration resumes normally
assert_eq!(iter.next(), Some(Ok(5)));
// let's drain the iterator to test peek() at the end
while iter.next().is_some() {}
assert_eq!(iter.peek(), None);
}
#[test]
fn test_empty() {
let mut iter =
AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap();
assert!(!iter.is_empty());
while iter.next().is_some() {}
assert!(!iter.is_empty());
let iter =
AncestorsIterator::new(SampleGraph, vec![], 0, true).unwrap();
assert!(iter.is_empty());
// case where iter.seen == {NULL_REVISION}
let iter =
AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap();
assert!(iter.is_empty());
}
/// A corrupted Graph, supporting error handling tests
#[derive(Clone, Debug)]
struct Corrupted;
impl Graph for Corrupted {
fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
match rev {
1 => Ok([0, -1]),
r => Err(GraphError::ParentOutOfRange(r)),
}
}
}
#[test]
fn test_initrev_out_of_range() {
// inclusive=false looks up initrev's parents right away
match AncestorsIterator::new(SampleGraph, vec![25], 0, false) {
Ok(_) => panic!("Should have been ParentOutOfRange"),
Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25)),
}
}
#[test]
fn test_next_out_of_range() {
// inclusive=false looks up initrev's parents right away
let mut iter =
AncestorsIterator::new(Corrupted, vec![1], 0, false).unwrap();
assert_eq!(iter.next(), Some(Err(GraphError::ParentOutOfRange(0))));
}
#[test]
fn test_lazy_iter_contains() {
let mut lazy =
LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap();
let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
// compare with iterator tests on the same initial revisions
assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
// contains() results are correct, unaffected by the fact that
// we consumed entirely an iterator out of lazy
assert_eq!(lazy.contains(2), Ok(true));
assert_eq!(lazy.contains(9), Ok(false));
}
#[test]
fn test_lazy_contains_iter() {
let mut lazy =
LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0]
assert_eq!(lazy.contains(2), Ok(true));
assert_eq!(lazy.contains(6), Ok(false));
// after consumption of 2 by the inner iterator, results stay
// consistent
assert_eq!(lazy.contains(2), Ok(true));
assert_eq!(lazy.contains(5), Ok(false));
// iter() still gives us a fresh iterator
let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
}
#[test]
/// Test constructor, add/get bases
fn test_missing_bases() {
let mut missing_ancestors =
MissingAncestors::new(SampleGraph, [5, 3, 1, 3].iter().cloned());
let mut as_vec: Vec<Revision> =
missing_ancestors.get_bases().iter().cloned().collect();
as_vec.sort();
assert_eq!(as_vec, [1, 3, 5]);
missing_ancestors.add_bases([3, 7, 8].iter().cloned());
as_vec = missing_ancestors.get_bases().iter().cloned().collect();
as_vec.sort();
assert_eq!(as_vec, [1, 3, 5, 7, 8]);
}
fn assert_missing_remove(
bases: &[Revision],
revs: &[Revision],
expected: &[Revision],
) {
let mut missing_ancestors =
MissingAncestors::new(SampleGraph, bases.iter().cloned());
let mut revset: HashSet<Revision> = revs.iter().cloned().collect();
missing_ancestors
.remove_ancestors_from(&mut revset)
.unwrap();
let mut as_vec: Vec<Revision> = revset.into_iter().collect();
as_vec.sort();
assert_eq!(as_vec.as_slice(), expected);
}
#[test]
fn test_missing_remove() {
assert_missing_remove(
&[1, 2, 3, 4, 7],
Vec::from_iter(1..10).as_slice(),
&[5, 6, 8, 9],
);
assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]);
assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]);
}
fn assert_missing_ancestors(
bases: &[Revision],
revs: &[Revision],
expected: &[Revision],
) {
let mut missing_ancestors =
MissingAncestors::new(SampleGraph, bases.iter().cloned());
let missing = missing_ancestors
.missing_ancestors(revs.iter().cloned())
.unwrap();
assert_eq!(missing.as_slice(), expected);
}
#[test]
fn test_missing_ancestors() {
// examples taken from test-ancestors.py by having it run
// on the same graph (both naive and fast Python algs)
assert_missing_ancestors(&[10], &[11], &[3, 7, 11]);
assert_missing_ancestors(&[11], &[10], &[5, 10]);
assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]);
}
/// An interesting case found by a random generator similar to
/// the one in test-ancestor.py. An early version of Rust MissingAncestors
/// failed this, yet none of the integration tests of the whole suite
/// catched it.
#[test]
fn test_remove_ancestors_from_case1() {
let graph: VecGraph = vec![
[NULL_REVISION, NULL_REVISION],
[0, NULL_REVISION],
[1, 0],
[2, 1],
[3, NULL_REVISION],
[4, NULL_REVISION],
[5, 1],
[2, NULL_REVISION],
[7, NULL_REVISION],
[8, NULL_REVISION],
[9, NULL_REVISION],
[10, 1],
[3, NULL_REVISION],
[12, NULL_REVISION],
[13, NULL_REVISION],
[14, NULL_REVISION],
[4, NULL_REVISION],
[16, NULL_REVISION],
[17, NULL_REVISION],
[18, NULL_REVISION],
[19, 11],
[20, NULL_REVISION],
[21, NULL_REVISION],
[22, NULL_REVISION],
[23, NULL_REVISION],
[2, NULL_REVISION],
[3, NULL_REVISION],
[26, 24],
[27, NULL_REVISION],
[28, NULL_REVISION],
[12, NULL_REVISION],
[1, NULL_REVISION],
[1, 9],
[32, NULL_REVISION],
[33, NULL_REVISION],
[34, 31],
[35, NULL_REVISION],
[36, 26],
[37, NULL_REVISION],
[38, NULL_REVISION],
[39, NULL_REVISION],
[40, NULL_REVISION],
[41, NULL_REVISION],
[42, 26],
[0, NULL_REVISION],
[44, NULL_REVISION],
[45, 4],
[40, NULL_REVISION],
[47, NULL_REVISION],
[36, 0],
[49, NULL_REVISION],
[NULL_REVISION, NULL_REVISION],
[51, NULL_REVISION],
[52, NULL_REVISION],
[53, NULL_REVISION],
[14, NULL_REVISION],
[55, NULL_REVISION],
[15, NULL_REVISION],
[23, NULL_REVISION],
[58, NULL_REVISION],
[59, NULL_REVISION],
[2, NULL_REVISION],
[61, 59],
[62, NULL_REVISION],
[63, NULL_REVISION],
[NULL_REVISION, NULL_REVISION],
[65, NULL_REVISION],
[66, NULL_REVISION],
[67, NULL_REVISION],
[68, NULL_REVISION],
[37, 28],
[69, 25],
[71, NULL_REVISION],
[72, NULL_REVISION],
[50, 2],
[74, NULL_REVISION],
[12, NULL_REVISION],
[18, NULL_REVISION],
[77, NULL_REVISION],
[78, NULL_REVISION],
[79, NULL_REVISION],
[43, 33],
[81, NULL_REVISION],
[82, NULL_REVISION],
[83, NULL_REVISION],
[84, 45],
[85, NULL_REVISION],
[86, NULL_REVISION],
[NULL_REVISION, NULL_REVISION],
[88, NULL_REVISION],
[NULL_REVISION, NULL_REVISION],
[76, 83],
[44, NULL_REVISION],
[92, NULL_REVISION],
[93, NULL_REVISION],
[9, NULL_REVISION],
[95, 67],
[96, NULL_REVISION],
[97, NULL_REVISION],
[NULL_REVISION, NULL_REVISION],
];
let problem_rev = 28 as Revision;
let problem_base = 70 as Revision;
// making the problem obvious: problem_rev is a parent of problem_base
assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev);
let mut missing_ancestors: MissingAncestors<VecGraph> =
MissingAncestors::new(
graph,
[60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6]
.iter()
.cloned(),
);
assert!(missing_ancestors.bases.contains(&problem_base));
let mut revs: HashSet<Revision> =
[4, 12, 41, 28, 68, 38, 1, 30, 56, 44]
.iter()
.cloned()
.collect();
missing_ancestors.remove_ancestors_from(&mut revs).unwrap();
assert!(!revs.contains(&problem_rev));
}
}