##// END OF EJS Templates
graft: fix interpolation in a ProgrammingError case...
graft: fix interpolation in a ProgrammingError case The `action` is str, which can't be interpolated into bytes. Fortunately, `ProgrammingError` allows a str to be passed.

File last commit:

r53202:f69a3f55 default
r53243:1802d9af default
Show More
inner_revlog.rs
1352 lines | 47.0 KiB | application/rls-services+xml | RustLexer
//! A layer of lower-level revlog functionality to encapsulate most of the
//! IO work and expensive operations.
use std::{
borrow::Cow,
cell::RefCell,
io::{ErrorKind, Seek, SeekFrom, Write},
ops::Deref,
path::PathBuf,
sync::{Arc, Mutex},
};
use schnellru::{ByMemoryUsage, LruMap};
use sha1::{Digest, Sha1};
use crate::{
errors::{HgError, IoResultExt},
exit_codes,
transaction::Transaction,
vfs::Vfs,
};
use super::{
compression::{
uncompressed_zstd_data, CompressionConfig, Compressor, NoneCompressor,
ZlibCompressor, ZstdCompressor, ZLIB_BYTE, ZSTD_BYTE,
},
file_io::{DelayedBuffer, FileHandle, RandomAccessFile, WriteHandles},
index::{Index, IndexHeader, INDEX_ENTRY_SIZE},
node::{NODE_BYTES_LENGTH, NULL_NODE},
options::{RevlogDataConfig, RevlogDeltaConfig, RevlogFeatureConfig},
BaseRevision, Node, Revision, RevlogEntry, RevlogError, RevlogIndex,
UncheckedRevision, NULL_REVISION, NULL_REVLOG_ENTRY_FLAGS,
};
/// Matches the `_InnerRevlog` class in the Python code, as an arbitrary
/// boundary to incrementally rewrite higher-level revlog functionality in
/// Rust.
pub struct InnerRevlog {
/// When index and data are not interleaved: bytes of the revlog index.
/// When index and data are interleaved (inline revlog): bytes of the
/// revlog index and data.
pub index: Index,
/// The store vfs that is used to interact with the filesystem
vfs: Box<dyn Vfs>,
/// The index file path, relative to the vfs root
pub index_file: PathBuf,
/// The data file path, relative to the vfs root (same as `index_file`
/// if inline)
data_file: PathBuf,
/// Data config that applies to this revlog
data_config: RevlogDataConfig,
/// Delta config that applies to this revlog
delta_config: RevlogDeltaConfig,
/// Feature config that applies to this revlog
#[allow(unused)]
feature_config: RevlogFeatureConfig,
/// A view into this revlog's data file
segment_file: RandomAccessFile,
/// A cache of uncompressed chunks that have previously been restored.
/// Its eviction policy is defined in [`Self::new`].
uncompressed_chunk_cache: Option<UncompressedChunkCache>,
/// Used to keep track of the actual target during diverted writes
/// for the changelog
original_index_file: Option<PathBuf>,
/// Write handles to the index and data files
/// XXX why duplicate from `index` and `segment_file`?
writing_handles: Option<WriteHandles>,
/// See [`DelayedBuffer`].
delayed_buffer: Option<Arc<Mutex<DelayedBuffer>>>,
/// Whether this revlog is inline. XXX why duplicate from `index`?
pub inline: bool,
/// A cache of the last revision, which is usually accessed multiple
/// times.
pub last_revision_cache: Mutex<Option<SingleRevisionCache>>,
/// The [`Compressor`] that this revlog uses by default to compress data.
/// This does not mean that this revlog uses this compressor for reading
/// data, as different revisions may have different compression modes.
compressor: Mutex<Box<dyn Compressor>>,
}
impl InnerRevlog {
pub fn new(
vfs: Box<dyn Vfs>,
index: Index,
index_file: PathBuf,
data_file: PathBuf,
data_config: RevlogDataConfig,
delta_config: RevlogDeltaConfig,
feature_config: RevlogFeatureConfig,
) -> Self {
assert!(index_file.is_relative());
assert!(data_file.is_relative());
let segment_file = RandomAccessFile::new(
dyn_clone::clone_box(&*vfs),
if index.is_inline() {
index_file.to_owned()
} else {
data_file.to_owned()
},
);
let uncompressed_chunk_cache =
data_config.uncompressed_cache_factor.map(
// Arbitrary initial value
// TODO check if using a hasher specific to integers is useful
|_factor| RefCell::new(LruMap::with_memory_budget(65536)),
);
let inline = index.is_inline();
Self {
index,
vfs,
index_file,
data_file,
data_config,
delta_config,
feature_config,
segment_file,
uncompressed_chunk_cache,
original_index_file: None,
writing_handles: None,
delayed_buffer: None,
inline,
last_revision_cache: Mutex::new(None),
compressor: Mutex::new(match feature_config.compression_engine {
CompressionConfig::Zlib { level } => {
Box::new(ZlibCompressor::new(level))
}
CompressionConfig::Zstd { level, threads } => {
Box::new(ZstdCompressor::new(level, threads))
}
CompressionConfig::None => Box::new(NoneCompressor),
}),
}
}
/// Return number of entries of the revlog index
pub fn len(&self) -> usize {
self.index.len()
}
/// Return `true` if this revlog has no entries
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return whether this revlog is inline (mixed index and data)
pub fn is_inline(&self) -> bool {
self.inline
}
/// Clear all caches from this revlog
pub fn clear_cache(&mut self) {
assert!(!self.is_delaying());
if let Some(cache) = self.uncompressed_chunk_cache.as_ref() {
// We don't clear the allocation here because it's probably faster.
// We could change our minds later if this ends up being a problem
// with regards to memory consumption.
cache.borrow_mut().clear();
}
}
/// Return an entry for the null revision
pub fn make_null_entry(&self) -> RevlogEntry {
RevlogEntry {
revlog: self,
rev: NULL_REVISION,
uncompressed_len: 0,
p1: NULL_REVISION,
p2: NULL_REVISION,
flags: NULL_REVLOG_ENTRY_FLAGS,
hash: NULL_NODE,
}
}
/// Return the [`RevlogEntry`] for a [`Revision`] that is known to exist
pub fn get_entry(
&self,
rev: Revision,
) -> Result<RevlogEntry, RevlogError> {
if rev == NULL_REVISION {
return Ok(self.make_null_entry());
}
let index_entry = self
.index
.get_entry(rev)
.ok_or_else(|| RevlogError::InvalidRevision(rev.to_string()))?;
let p1 =
self.index.check_revision(index_entry.p1()).ok_or_else(|| {
RevlogError::corrupted(format!(
"p1 for rev {} is invalid",
rev
))
})?;
let p2 =
self.index.check_revision(index_entry.p2()).ok_or_else(|| {
RevlogError::corrupted(format!(
"p2 for rev {} is invalid",
rev
))
})?;
let entry = RevlogEntry {
revlog: self,
rev,
uncompressed_len: index_entry.uncompressed_len(),
p1,
p2,
flags: index_entry.flags(),
hash: *index_entry.hash(),
};
Ok(entry)
}
/// Return the [`RevlogEntry`] for `rev`. If `rev` fails to check, this
/// returns a [`RevlogError`].
pub fn get_entry_for_unchecked_rev(
&self,
rev: UncheckedRevision,
) -> Result<RevlogEntry, RevlogError> {
if rev == NULL_REVISION.into() {
return Ok(self.make_null_entry());
}
let rev = self.index.check_revision(rev).ok_or_else(|| {
RevlogError::corrupted(format!("rev {} is invalid", rev))
})?;
self.get_entry(rev)
}
/// Is the revlog currently delaying the visibility of written data?
///
/// The delaying mechanism can be either in-memory or written on disk in a
/// side-file.
pub fn is_delaying(&self) -> bool {
self.delayed_buffer.is_some() || self.original_index_file.is_some()
}
/// The offset of the data chunk for this revision
#[inline(always)]
pub fn data_start(&self, rev: Revision) -> usize {
self.index.start(
rev,
&self
.index
.get_entry(rev)
.unwrap_or_else(|| self.index.make_null_entry()),
)
}
/// The length of the data chunk for this revision
#[inline(always)]
pub fn data_compressed_length(&self, rev: Revision) -> usize {
self.index
.get_entry(rev)
.unwrap_or_else(|| self.index.make_null_entry())
.compressed_len() as usize
}
/// The end of the data chunk for this revision
#[inline(always)]
pub fn data_end(&self, rev: Revision) -> usize {
self.data_start(rev) + self.data_compressed_length(rev)
}
/// Return the delta parent of the given revision
pub fn delta_parent(&self, rev: Revision) -> Revision {
let base = self
.index
.get_entry(rev)
.unwrap()
.base_revision_or_base_of_delta_chain();
if base.0 == rev.0 {
NULL_REVISION
} else if self.delta_config.general_delta {
Revision(base.0)
} else {
Revision(rev.0 - 1)
}
}
/// Return whether `rev` points to a snapshot revision (i.e. does not have
/// a delta base).
pub fn is_snapshot(&self, rev: Revision) -> Result<bool, RevlogError> {
if !self.delta_config.sparse_revlog {
return Ok(self.delta_parent(rev) == NULL_REVISION);
}
self.index.is_snapshot_unchecked(rev)
}
/// Return the delta chain for `rev` according to this revlog's config.
/// See [`Index::delta_chain`] for more information.
pub fn delta_chain(
&self,
rev: Revision,
stop_rev: Option<Revision>,
) -> Result<(Vec<Revision>, bool), HgError> {
self.index.delta_chain(
rev,
stop_rev,
self.delta_config.general_delta.into(),
)
}
/// Generate a possibly-compressed representation of data.
/// Returns `None` if the data was not compressed.
pub fn compress<'data>(
&self,
data: &'data [u8],
) -> Result<Option<Cow<'data, [u8]>>, RevlogError> {
if data.is_empty() {
return Ok(Some(data.into()));
}
let res = self.compressor.lock().unwrap().compress(data)?;
if let Some(compressed) = res {
// The revlog compressor added the header in the returned data.
return Ok(Some(compressed.into()));
}
if data[0] == b'\0' {
return Ok(Some(data.into()));
}
Ok(None)
}
/// Decompress a revlog chunk.
///
/// The chunk is expected to begin with a header identifying the
/// format type so it can be routed to an appropriate decompressor.
pub fn decompress<'a>(
&'a self,
data: &'a [u8],
) -> Result<Cow<[u8]>, RevlogError> {
if data.is_empty() {
return Ok(data.into());
}
// Revlogs are read much more frequently than they are written and many
// chunks only take microseconds to decompress, so performance is
// important here.
let header = data[0];
match header {
// Settings don't matter as they only affect compression
ZLIB_BYTE => Ok(ZlibCompressor::new(0).decompress(data)?.into()),
// Settings don't matter as they only affect compression
ZSTD_BYTE => {
Ok(ZstdCompressor::new(0, 0).decompress(data)?.into())
}
b'\0' => Ok(data.into()),
b'u' => Ok((&data[1..]).into()),
other => Err(HgError::UnsupportedFeature(format!(
"unknown compression header '{}'",
other
))
.into()),
}
}
/// Obtain a segment of raw data corresponding to a range of revisions.
///
/// Requests for data may be satisfied by a cache.
///
/// Returns a 2-tuple of (offset, data) for the requested range of
/// revisions. Offset is the integer offset from the beginning of the
/// revlog and data is a slice of the raw byte data.
///
/// Callers will need to call `self.start(rev)` and `self.length(rev)`
/// to determine where each revision's data begins and ends.
pub fn get_segment_for_revs(
&self,
start_rev: Revision,
end_rev: Revision,
) -> Result<(usize, Vec<u8>), HgError> {
let start = if start_rev == NULL_REVISION {
0
} else {
let start_entry = self
.index
.get_entry(start_rev)
.expect("null revision segment");
self.index.start(start_rev, &start_entry)
};
let end_entry = self
.index
.get_entry(end_rev)
.expect("null revision segment");
let end = self.index.start(end_rev, &end_entry)
+ self.data_compressed_length(end_rev);
let length = end - start;
// XXX should we use mmap instead of doing this for platforms that
// support madvise/populate?
Ok((start, self.segment_file.read_chunk(start, length)?))
}
/// Return the uncompressed raw data for `rev`
pub fn chunk_for_rev(&self, rev: Revision) -> Result<Arc<[u8]>, HgError> {
if let Some(cache) = self.uncompressed_chunk_cache.as_ref() {
if let Some(chunk) = cache.borrow_mut().get(&rev) {
return Ok(chunk.clone());
}
}
// TODO revlogv2 should check the compression mode
let data = self.get_segment_for_revs(rev, rev)?.1;
let uncompressed = self.decompress(&data).map_err(|e| {
HgError::abort(
format!("revlog decompression error: {}", e),
exit_codes::ABORT,
None,
)
})?;
let uncompressed: Arc<[u8]> = Arc::from(uncompressed.into_owned());
if let Some(cache) = self.uncompressed_chunk_cache.as_ref() {
cache.borrow_mut().insert(rev, uncompressed.clone());
}
Ok(uncompressed)
}
/// Execute `func` within a read context for the data file, meaning that
/// the read handle will be taken and discarded after the operation.
pub fn with_read<R>(
&self,
func: impl FnOnce() -> Result<R, RevlogError>,
) -> Result<R, RevlogError> {
self.enter_reading_context()?;
let res = func();
self.exit_reading_context();
res.map_err(Into::into)
}
/// `pub` only for use in hg-cpython
#[doc(hidden)]
pub fn enter_reading_context(&self) -> Result<(), HgError> {
if self.is_empty() {
// Nothing to be read
return Ok(());
}
if self.delayed_buffer.is_some() && self.is_inline() {
return Err(HgError::abort(
"revlog with delayed write should not be inline",
exit_codes::ABORT,
None,
));
}
self.segment_file.get_read_handle()?;
Ok(())
}
/// `pub` only for use in hg-cpython
#[doc(hidden)]
pub fn exit_reading_context(&self) {
self.segment_file.exit_reading_context()
}
/// Fill the buffer returned by `get_buffer` with the possibly un-validated
/// raw text for a revision. It can be already validated if it comes
/// from the cache.
pub fn raw_text<G, T>(
&self,
rev: Revision,
get_buffer: G,
) -> Result<(), RevlogError>
where
G: FnOnce(
usize,
&mut dyn FnMut(
&mut dyn RevisionBuffer<Target = T>,
) -> Result<(), RevlogError>,
) -> Result<(), RevlogError>,
{
let entry = &self.get_entry(rev)?;
let raw_size = entry.uncompressed_len();
let mut mutex_guard = self
.last_revision_cache
.lock()
.expect("lock should not be held");
let cached_rev = if let Some((_node, rev, data)) = &*mutex_guard {
Some((*rev, data.deref().as_ref()))
} else {
None
};
if let Some(cache) = &self.uncompressed_chunk_cache {
let cache = &mut cache.borrow_mut();
if let Some(size) = raw_size {
// Dynamically update the uncompressed_chunk_cache size to the
// largest revision we've seen in this revlog.
// Do it *before* restoration in case the current revision
// is the largest.
let factor = self
.data_config
.uncompressed_cache_factor
.expect("cache should not exist without factor");
let candidate_size = (size as f64 * factor) as usize;
let limiter_mut = cache.limiter_mut();
if candidate_size > limiter_mut.max_memory_usage() {
std::mem::swap(
limiter_mut,
&mut ByMemoryUsage::new(candidate_size),
);
}
}
}
entry.rawdata(cached_rev, get_buffer)?;
// drop cache to save memory, the caller is expected to update
// the revision cache after validating the text
mutex_guard.take();
Ok(())
}
/// Only `pub` for `hg-cpython`.
/// Obtain decompressed raw data for the specified revisions that are
/// assumed to be in ascending order.
///
/// Returns a list with decompressed data for each requested revision.
#[doc(hidden)]
pub fn chunks(
&self,
revs: Vec<Revision>,
target_size: Option<u64>,
) -> Result<Vec<Arc<[u8]>>, RevlogError> {
if revs.is_empty() {
return Ok(vec![]);
}
let mut fetched_revs = vec![];
let mut chunks = Vec::with_capacity(revs.len());
match self.uncompressed_chunk_cache.as_ref() {
Some(cache) => {
let mut cache = cache.borrow_mut();
for rev in revs.iter() {
match cache.get(rev) {
Some(hit) => chunks.push((*rev, hit.to_owned())),
None => fetched_revs.push(*rev),
}
}
}
None => fetched_revs = revs,
}
let already_cached = chunks.len();
let sliced_chunks = if fetched_revs.is_empty() {
vec![]
} else if !self.data_config.with_sparse_read || self.is_inline() {
vec![fetched_revs]
} else {
self.slice_chunk(&fetched_revs, target_size)?
};
self.with_read(|| {
for revs_chunk in sliced_chunks {
let first_rev = revs_chunk[0];
// Skip trailing revisions with empty diff
let last_rev_idx = revs_chunk
.iter()
.rposition(|r| self.data_compressed_length(*r) != 0)
.unwrap_or(revs_chunk.len() - 1);
let last_rev = revs_chunk[last_rev_idx];
let (offset, data) =
self.get_segment_for_revs(first_rev, last_rev)?;
let revs_chunk = &revs_chunk[..=last_rev_idx];
for rev in revs_chunk {
let chunk_start = self.data_start(*rev);
let chunk_length = self.data_compressed_length(*rev);
// TODO revlogv2 should check the compression mode
let bytes = &data[chunk_start - offset..][..chunk_length];
let chunk = if !bytes.is_empty() && bytes[0] == ZSTD_BYTE {
// If we're using `zstd`, we want to try a more
// specialized decompression
let entry = self.index.get_entry(*rev).unwrap();
let is_delta = entry
.base_revision_or_base_of_delta_chain()
!= (*rev).into();
let uncompressed = uncompressed_zstd_data(
bytes,
is_delta,
entry.uncompressed_len(),
)?;
Cow::Owned(uncompressed)
} else {
// Otherwise just fallback to generic decompression.
self.decompress(bytes)?
};
chunks.push((*rev, chunk.into()));
}
}
Ok(())
})?;
if let Some(cache) = self.uncompressed_chunk_cache.as_ref() {
let mut cache = cache.borrow_mut();
for (rev, chunk) in chunks.iter().skip(already_cached) {
cache.insert(*rev, chunk.clone());
}
}
// Use stable sort here since it's *mostly* sorted
chunks.sort_by(|a, b| a.0.cmp(&b.0));
Ok(chunks.into_iter().map(|(_r, chunk)| chunk).collect())
}
/// Slice revs to reduce the amount of unrelated data to be read from disk.
///
/// ``revs`` is sliced into groups that should be read in one time.
/// Assume that revs are sorted.
///
/// The initial chunk is sliced until the overall density
/// (payload/chunks-span ratio) is above
/// `revlog.data_config.sr_density_threshold`.
/// No gap smaller than `revlog.data_config.sr_min_gap_size` is skipped.
///
/// If `target_size` is set, no chunk larger than `target_size`
/// will be returned.
/// For consistency with other slicing choices, this limit won't go lower
/// than `revlog.data_config.sr_min_gap_size`.
///
/// If individual revision chunks are larger than this limit, they will
/// still be raised individually.
pub fn slice_chunk(
&self,
revs: &[Revision],
target_size: Option<u64>,
) -> Result<Vec<Vec<Revision>>, RevlogError> {
let target_size =
target_size.map(|size| size.max(self.data_config.sr_min_gap_size));
let target_density = self.data_config.sr_density_threshold;
let min_gap_size = self.data_config.sr_min_gap_size as usize;
let to_density = self.index.slice_chunk_to_density(
revs,
target_density,
min_gap_size,
);
let mut sliced = vec![];
for chunk in to_density {
sliced.extend(
self.slice_chunk_to_size(&chunk, target_size)?
.into_iter()
.map(ToOwned::to_owned),
);
}
Ok(sliced)
}
/// Slice revs to match the target size
///
/// This is intended to be used on chunks that density slicing selected,
/// but that are still too large compared to the read guarantee of revlogs.
/// This might happen when the "minimal gap size" interrupted the slicing
/// or when chains are built in a way that create large blocks next to
/// each other.
fn slice_chunk_to_size<'a>(
&self,
revs: &'a [Revision],
target_size: Option<u64>,
) -> Result<Vec<&'a [Revision]>, RevlogError> {
let mut start_data = self.data_start(revs[0]);
let end_data = self.data_end(revs[revs.len() - 1]);
let full_span = end_data - start_data;
let nothing_to_do = target_size
.map(|size| full_span <= size as usize)
.unwrap_or(true);
if nothing_to_do {
return Ok(vec![revs]);
}
let target_size = target_size.expect("target_size is set") as usize;
let mut start_rev_idx = 0;
let mut end_rev_idx = 1;
let mut chunks = vec![];
for (idx, rev) in revs.iter().enumerate().skip(1) {
let span = self.data_end(*rev) - start_data;
let is_snapshot = self.is_snapshot(*rev)?;
if span <= target_size && is_snapshot {
end_rev_idx = idx + 1;
} else {
let chunk =
self.trim_chunk(revs, start_rev_idx, Some(end_rev_idx));
if !chunk.is_empty() {
chunks.push(chunk);
}
start_rev_idx = idx;
start_data = self.data_start(*rev);
end_rev_idx = idx + 1;
}
if !is_snapshot {
break;
}
}
// For the others, we use binary slicing to quickly converge towards
// valid chunks (otherwise, we might end up looking for the start/end
// of many revisions). This logic is not looking for the perfect
// slicing point, it quickly converges towards valid chunks.
let number_of_items = revs.len();
while (end_data - start_data) > target_size {
end_rev_idx = number_of_items;
if number_of_items - start_rev_idx <= 1 {
// Protect against individual chunks larger than the limit
break;
}
let mut local_end_data = self.data_end(revs[end_rev_idx - 1]);
let mut span = local_end_data - start_data;
while span > target_size {
if end_rev_idx - start_rev_idx <= 1 {
// Protect against individual chunks larger than the limit
break;
}
end_rev_idx -= (end_rev_idx - start_rev_idx) / 2;
local_end_data = self.data_end(revs[end_rev_idx - 1]);
span = local_end_data - start_data;
}
let chunk =
self.trim_chunk(revs, start_rev_idx, Some(end_rev_idx));
if !chunk.is_empty() {
chunks.push(chunk);
}
start_rev_idx = end_rev_idx;
start_data = self.data_start(revs[start_rev_idx]);
}
let chunk = self.trim_chunk(revs, start_rev_idx, None);
if !chunk.is_empty() {
chunks.push(chunk);
}
Ok(chunks)
}
/// Returns `revs[startidx..endidx]` without empty trailing revs
fn trim_chunk<'a>(
&self,
revs: &'a [Revision],
start_rev_idx: usize,
end_rev_idx: Option<usize>,
) -> &'a [Revision] {
let mut end_rev_idx = end_rev_idx.unwrap_or(revs.len());
// If we have a non-empty delta candidate, there is nothing to trim
if revs[end_rev_idx - 1].0 < self.len() as BaseRevision {
// Trim empty revs at the end, except the very first rev of a chain
while end_rev_idx > 1
&& end_rev_idx > start_rev_idx
&& self.data_compressed_length(revs[end_rev_idx - 1]) == 0
{
end_rev_idx -= 1
}
}
&revs[start_rev_idx..end_rev_idx]
}
/// Check the hash of some given data against the recorded hash.
pub fn check_hash(
&self,
p1: Revision,
p2: Revision,
expected: &[u8],
data: &[u8],
) -> bool {
let e1 = self.index.get_entry(p1);
let h1 = match e1 {
Some(ref entry) => entry.hash(),
None => &NULL_NODE,
};
let e2 = self.index.get_entry(p2);
let h2 = match e2 {
Some(ref entry) => entry.hash(),
None => &NULL_NODE,
};
hash(data, h1.as_bytes(), h2.as_bytes()) == expected
}
/// Returns whether we are currently in a [`Self::with_write`] context
pub fn is_writing(&self) -> bool {
self.writing_handles.is_some()
}
/// Open the revlog files for writing
///
/// Adding content to a revlog should be done within this context.
/// TODO try using `BufRead` and `BufWrite` and see if performance improves
pub fn with_write<R>(
&mut self,
transaction: &mut impl Transaction,
data_end: Option<usize>,
func: impl FnOnce() -> R,
) -> Result<R, HgError> {
if self.is_writing() {
return Ok(func());
}
self.enter_writing_context(data_end, transaction)
.inspect_err(|_| {
self.exit_writing_context();
})?;
let res = func();
self.exit_writing_context();
Ok(res)
}
/// `pub` only for use in hg-cpython
#[doc(hidden)]
pub fn exit_writing_context(&mut self) {
self.writing_handles.take();
self.segment_file.writing_handle.take();
self.segment_file.reading_handle.take();
}
/// `pub` only for use in hg-cpython
#[doc(hidden)]
pub fn python_writing_handles(&self) -> Option<&WriteHandles> {
self.writing_handles.as_ref()
}
/// `pub` only for use in hg-cpython
#[doc(hidden)]
pub fn enter_writing_context(
&mut self,
data_end: Option<usize>,
transaction: &mut impl Transaction,
) -> Result<(), HgError> {
let data_size = if self.is_empty() {
0
} else {
self.data_end(Revision((self.len() - 1) as BaseRevision))
};
let data_handle = if !self.is_inline() {
let data_handle = match self.vfs.open_write(&self.data_file) {
Ok(mut f) => {
if let Some(end) = data_end {
f.seek(SeekFrom::Start(end as u64))
.when_reading_file(&self.data_file)?;
} else {
f.seek(SeekFrom::End(0))
.when_reading_file(&self.data_file)?;
}
f
}
Err(e) => match e {
HgError::IoError { error, context } => {
if error.kind() != ErrorKind::NotFound {
return Err(HgError::IoError { error, context });
}
self.vfs.create(&self.data_file, true)?
}
e => return Err(e),
},
};
transaction.add(&self.data_file, data_size);
Some(FileHandle::from_file(
data_handle,
dyn_clone::clone_box(&*self.vfs),
&self.data_file,
))
} else {
None
};
let index_size = self.len() * INDEX_ENTRY_SIZE;
let index_handle = self.index_write_handle()?;
if self.is_inline() {
transaction.add(&self.index_file, data_size);
} else {
transaction.add(&self.index_file, index_size);
}
self.writing_handles = Some(WriteHandles {
index_handle: index_handle.clone(),
data_handle: data_handle.clone(),
});
*self.segment_file.reading_handle.borrow_mut() = if self.is_inline() {
Some(index_handle)
} else {
data_handle
};
Ok(())
}
/// Get a write handle to the index, sought to the end of its data.
fn index_write_handle(&self) -> Result<FileHandle, HgError> {
let res = if self.delayed_buffer.is_none() {
if self.data_config.check_ambig {
self.vfs.open_check_ambig(&self.index_file)
} else {
self.vfs.open_write(&self.index_file)
}
} else {
self.vfs.open_write(&self.index_file)
};
match res {
Ok(mut handle) => {
handle
.seek(SeekFrom::End(0))
.when_reading_file(&self.index_file)?;
Ok(
if let Some(delayed_buffer) = self.delayed_buffer.as_ref()
{
FileHandle::from_file_delayed(
handle,
dyn_clone::clone_box(&*self.vfs),
&self.index_file,
delayed_buffer.clone(),
)?
} else {
FileHandle::from_file(
handle,
dyn_clone::clone_box(&*self.vfs),
&self.index_file,
)
},
)
}
Err(e) => match e {
HgError::IoError { error, context } => {
if error.kind() != ErrorKind::NotFound {
return Err(HgError::IoError { error, context });
};
if let Some(delayed_buffer) = self.delayed_buffer.as_ref()
{
FileHandle::new_delayed(
dyn_clone::clone_box(&*self.vfs),
&self.index_file,
true,
delayed_buffer.clone(),
)
} else {
FileHandle::new(
dyn_clone::clone_box(&*self.vfs),
&self.index_file,
true,
true,
)
}
}
e => Err(e),
},
}
}
/// Split the data of an inline revlog into an index and a data file
pub fn split_inline(
&mut self,
header: IndexHeader,
new_index_file_path: Option<PathBuf>,
) -> Result<PathBuf, RevlogError> {
assert!(self.delayed_buffer.is_none());
let existing_handles = self.writing_handles.is_some();
if let Some(handles) = &mut self.writing_handles {
handles.index_handle.flush()?;
self.writing_handles.take();
self.segment_file.writing_handle.take();
}
let mut new_data_file_handle =
self.vfs.create(&self.data_file, true)?;
// Drop any potential data, possibly redundant with the VFS impl.
new_data_file_handle
.set_len(0)
.when_writing_file(&self.data_file)?;
self.with_read(|| -> Result<(), RevlogError> {
for r in 0..self.index.len() {
let rev = Revision(r as BaseRevision);
let rev_segment = self.get_segment_for_revs(rev, rev)?.1;
new_data_file_handle
.write_all(&rev_segment)
.when_writing_file(&self.data_file)?;
}
new_data_file_handle
.flush()
.when_writing_file(&self.data_file)?;
Ok(())
})?;
if let Some(index_path) = new_index_file_path {
self.index_file = index_path
}
let mut new_index_handle = self.vfs.create(&self.index_file, true)?;
let mut new_data = Vec::with_capacity(self.len() * INDEX_ENTRY_SIZE);
for r in 0..self.len() {
let rev = Revision(r as BaseRevision);
let entry = self.index.entry_binary(rev).unwrap_or_else(|| {
panic!(
"entry {} should exist in {}",
r,
self.index_file.display()
)
});
if r == 0 {
new_data.extend(header.header_bytes);
}
new_data.extend(entry);
}
new_index_handle
.write_all(&new_data)
.when_writing_file(&self.index_file)?;
// Replace the index with a new one because the buffer contains inline
// data
self.index = Index::new(Box::new(new_data), header)?;
self.inline = false;
self.segment_file = RandomAccessFile::new(
dyn_clone::clone_box(&*self.vfs),
self.data_file.to_owned(),
);
if existing_handles {
// Switched from inline to conventional, reopen the index
let new_data_handle = Some(FileHandle::from_file(
new_data_file_handle,
dyn_clone::clone_box(&*self.vfs),
&self.data_file,
));
self.writing_handles = Some(WriteHandles {
index_handle: self.index_write_handle()?,
data_handle: new_data_handle.clone(),
});
*self.segment_file.writing_handle.borrow_mut() = new_data_handle;
}
Ok(self.index_file.to_owned())
}
/// Write a new entry to this revlog.
/// - `entry` is the index bytes
/// - `header_and_data` is the compression header and the revision data
/// - `offset` is the position in the data file to write to
/// - `index_end` is the overwritten position in the index in revlog-v2,
/// since the format may allow a rewrite of garbage data at the end.
/// - `data_end` is the overwritten position in the data-file in revlog-v2,
/// since the format may allow a rewrite of garbage data at the end.
///
/// XXX Why do we have `data_end` *and* `offset`? Same question in Python
pub fn write_entry(
&mut self,
mut transaction: impl Transaction,
entry: &[u8],
header_and_data: (&[u8], &[u8]),
mut offset: usize,
index_end: Option<u64>,
data_end: Option<u64>,
) -> Result<(u64, Option<u64>), HgError> {
let current_revision = self.len() - 1;
let canonical_index_file = self.canonical_index_file();
let is_inline = self.is_inline();
let handles = match &mut self.writing_handles {
None => {
return Err(HgError::abort(
"adding revision outside of the `with_write` context",
exit_codes::ABORT,
None,
));
}
Some(handles) => handles,
};
let index_handle = &mut handles.index_handle;
let data_handle = &mut handles.data_handle;
if let Some(end) = index_end {
index_handle
.seek(SeekFrom::Start(end))
.when_reading_file(&self.index_file)?;
} else {
index_handle
.seek(SeekFrom::End(0))
.when_reading_file(&self.index_file)?;
}
if let Some(data_handle) = data_handle {
if let Some(end) = data_end {
data_handle
.seek(SeekFrom::Start(end))
.when_reading_file(&self.data_file)?;
} else {
data_handle
.seek(SeekFrom::End(0))
.when_reading_file(&self.data_file)?;
}
}
let (header, data) = header_and_data;
if !is_inline {
transaction.add(&self.data_file, offset);
transaction
.add(&canonical_index_file, current_revision * entry.len());
let data_handle = data_handle
.as_mut()
.expect("data handle should exist when not inline");
if !header.is_empty() {
data_handle.write_all(header)?;
}
data_handle.write_all(data)?;
match &mut self.delayed_buffer {
Some(buf) => {
buf.lock()
.expect("propagate the panic")
.buffer
.write_all(entry)
.expect("write to delay buffer should succeed");
}
None => index_handle.write_all(entry)?,
}
} else if self.delayed_buffer.is_some() {
return Err(HgError::abort(
"invalid delayed write on inline revlog",
exit_codes::ABORT,
None,
));
} else {
offset += current_revision * entry.len();
transaction.add(&canonical_index_file, offset);
index_handle.write_all(entry)?;
index_handle.write_all(header)?;
index_handle.write_all(data)?;
}
let data_position = match data_handle {
Some(h) => Some(h.position()?),
None => None,
};
Ok((index_handle.position()?, data_position))
}
/// Return the real target index file and not the temporary when diverting
pub fn canonical_index_file(&self) -> PathBuf {
self.original_index_file
.as_ref()
.map(ToOwned::to_owned)
.unwrap_or_else(|| self.index_file.to_owned())
}
/// Return the path to the diverted index
fn diverted_index(&self) -> PathBuf {
self.index_file.with_extension("i.a")
}
/// True if we're in a [`Self::with_write`] or [`Self::with_read`] context
pub fn is_open(&self) -> bool {
self.segment_file.is_open()
}
/// Set this revlog to delay its writes to a buffer
pub fn delay(&mut self) -> Result<Option<PathBuf>, HgError> {
assert!(!self.is_open());
if self.is_inline() {
return Err(HgError::abort(
"revlog with delayed write should not be inline",
exit_codes::ABORT,
None,
));
}
if self.delayed_buffer.is_some() || self.original_index_file.is_some()
{
// Delay or divert already happening
return Ok(None);
}
if self.is_empty() {
self.original_index_file = Some(self.index_file.to_owned());
self.index_file = self.diverted_index();
if self.vfs.exists(&self.index_file) {
self.vfs.unlink(&self.index_file)?;
}
Ok(Some(self.index_file.to_owned()))
} else {
self.delayed_buffer =
Some(Arc::new(Mutex::new(DelayedBuffer::default())));
Ok(None)
}
}
/// Write the pending data (in memory) if any to the diverted index file
/// (on disk temporary file)
pub fn write_pending(
&mut self,
) -> Result<(Option<PathBuf>, bool), HgError> {
assert!(!self.is_open());
if self.is_inline() {
return Err(HgError::abort(
"revlog with delayed write should not be inline",
exit_codes::ABORT,
None,
));
}
if self.original_index_file.is_some() {
return Ok((None, true));
}
let mut any_pending = false;
let pending_index_file = self.diverted_index();
if self.vfs.exists(&pending_index_file) {
self.vfs.unlink(&pending_index_file)?;
}
self.vfs.copy(&self.index_file, &pending_index_file)?;
if let Some(delayed_buffer) = self.delayed_buffer.take() {
let mut index_file_handle =
self.vfs.open_write(&pending_index_file)?;
index_file_handle
.seek(SeekFrom::End(0))
.when_writing_file(&pending_index_file)?;
let delayed_data =
&delayed_buffer.lock().expect("propagate the panic").buffer;
index_file_handle
.write_all(delayed_data)
.when_writing_file(&pending_index_file)?;
any_pending = true;
}
self.original_index_file = Some(self.index_file.to_owned());
self.index_file = pending_index_file;
Ok((Some(self.index_file.to_owned()), any_pending))
}
/// Overwrite the canonical file with the diverted file, or write out the
/// delayed buffer.
/// Returns an error if the revlog is neither diverted nor delayed.
pub fn finalize_pending(&mut self) -> Result<PathBuf, HgError> {
assert!(!self.is_open());
if self.is_inline() {
return Err(HgError::abort(
"revlog with delayed write should not be inline",
exit_codes::ABORT,
None,
));
}
match (
self.delayed_buffer.as_ref(),
self.original_index_file.as_ref(),
) {
(None, None) => {
return Err(HgError::abort(
"neither delay nor divert found on this revlog",
exit_codes::ABORT,
None,
));
}
(Some(delay), None) => {
let mut index_file_handle =
self.vfs.open_write(&self.index_file)?;
index_file_handle
.seek(SeekFrom::End(0))
.when_writing_file(&self.index_file)?;
index_file_handle
.write_all(
&delay.lock().expect("propagate the panic").buffer,
)
.when_writing_file(&self.index_file)?;
self.delayed_buffer = None;
}
(None, Some(divert)) => {
if self.vfs.exists(&self.index_file) {
self.vfs.rename(&self.index_file, divert, true)?;
}
divert.clone_into(&mut self.index_file);
self.original_index_file = None;
}
(Some(_), Some(_)) => unreachable!(
"{} is in an inconsistent state of both delay and divert",
self.canonical_index_file().display(),
),
}
Ok(self.canonical_index_file())
}
/// `pub` only for `hg-cpython`. This is made a different method than
/// [`Revlog::index`] in case there is a different invariant that pops up
/// later.
#[doc(hidden)]
pub fn shared_index(&self) -> &Index {
&self.index
}
}
/// The use of a [`Refcell`] assumes that a given revlog will only
/// be accessed (read or write) by a single thread.
type UncompressedChunkCache =
RefCell<LruMap<Revision, Arc<[u8]>, ByMemoryUsage>>;
/// The node, revision and data for the last revision we've seen. Speeds up
/// a lot of sequential operations of the revlog.
///
/// The data is not just bytes since it can come from Python and we want to
/// avoid copies if possible.
type SingleRevisionCache =
(Node, Revision, Box<dyn Deref<Target = [u8]> + Send>);
/// A way of progressively filling a buffer with revision data, then return
/// that buffer. Used to abstract away Python-allocated code to reduce copying
/// for performance reasons.
pub trait RevisionBuffer {
/// The owned buffer type to return
type Target;
/// Copies the slice into the buffer
fn extend_from_slice(&mut self, slice: &[u8]);
/// Returns the now finished owned buffer
fn finish(self) -> Self::Target;
}
/// A simple vec-based buffer. This is uselessly complicated for the pure Rust
/// case, but it's the price to pay for Python compatibility.
#[derive(Debug)]
pub(super) struct CoreRevisionBuffer {
buf: Vec<u8>,
}
impl CoreRevisionBuffer {
pub fn new() -> Self {
Self { buf: vec![] }
}
#[inline]
pub fn resize(&mut self, size: usize) {
self.buf.reserve_exact(size - self.buf.capacity());
}
}
impl RevisionBuffer for CoreRevisionBuffer {
type Target = Vec<u8>;
#[inline]
fn extend_from_slice(&mut self, slice: &[u8]) {
self.buf.extend_from_slice(slice);
}
#[inline]
fn finish(self) -> Self::Target {
self.buf
}
}
/// Calculate the hash of a revision given its data and its parents.
pub fn hash(
data: &[u8],
p1_hash: &[u8],
p2_hash: &[u8],
) -> [u8; NODE_BYTES_LENGTH] {
let mut hasher = Sha1::new();
let (a, b) = (p1_hash, p2_hash);
if a > b {
hasher.update(b);
hasher.update(a);
} else {
hasher.update(a);
hasher.update(b);
}
hasher.update(data);
*hasher.finalize().as_ref()
}