##// END OF EJS Templates
httppeer: remove support for connecting to <0.9.1 servers (BC)...
httppeer: remove support for connecting to <0.9.1 servers (BC) Previously, HTTP wire protocol clients would attempt a "capabilities" wire protocol command. If that failed, they would fall back to issuing a "between" command. The "capabilities" command was added in Mercurial 0.9.1 (released July 2006). The "between" command has been present for as long as the wire protocol has existed. So if the "between" command failed, it was safe to assume that the remote could not speak any version of the Mercurial wire protocol. The "between" fallback was added in 395a84f78736 in 2011. Before that changeset, Mercurial would *always* issue the "between" command and would issue "capabilities" if capabilities were requested. At that time, many connections would issue "capabilities" eventually, so it was decided to issue "capabilities" by default and fall back to "between" if that failed. This saved a round trip when connecting to modern servers while still preserving compatibility with legacy servers. Fast forward ~7 years. Mercurial servers supporting "capabilities" have been around for over a decade. If modern clients are connecting to <0.9.1 servers, they are getting a bad experience. They may even be getting bad data (an old server is vulnerable to numerous security issues and could have been p0wned, leading to a Mercurial repository serving backdoors or other badness). In addition, the fallback can harm experience for modern servers. If a client experiences an intermittent HTTP request failure (due to bad network, etc) and falls back to a "between" that works, it would assume an empty capability set and would attempt to communicate with the repository using a very ancient wire protocol. Auditing HTTP logs for hg.mozilla.org, I did find a handful of requests for the null range of the "between" command. However, requests can be days apart. And when I do see requests, they come in batches. Those batches seem to correlate to spikes of HTTP 500 or other server/network events. So I think these requests are fallbacks from failed "capabilities" requests and not from old clients. If you need even more evidence to discontinue support, apparently we have no test coverage for communicating with servers not supporting "capabilities." I know this because all tests pass with the "between" fallback removed. Finally, server-side support for <0.9.1 pushing (the "addchangegroup" wire protocol command along with locking-related commands) was dropped from the HTTP client in fda0867cfe03 in 2017 and the SSH client in 9f6e0e7ef828 in 2015. I think this all adds up to enough justification for removing client support for communicating with servers not supporting "capabilities." So this commit removes that fallback. Differential Revision: https://phab.mercurial-scm.org/D2001

File last commit:

r34747:54fa3db5 default
r35902:197d10e1 default
Show More
progress.py
303 lines | 10.9 KiB | text/x-python | PythonLexer
# progress.py progress bars related code
#
# Copyright (C) 2010 Augie Fackler <durin42@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import errno
import threading
import time
from .i18n import _
from . import encoding
def spacejoin(*args):
return ' '.join(s for s in args if s)
def shouldprint(ui):
return not (ui.quiet or ui.plain('progress')) and (
ui._isatty(ui.ferr) or ui.configbool('progress', 'assume-tty'))
def fmtremaining(seconds):
"""format a number of remaining seconds in human readable way
This will properly display seconds, minutes, hours, days if needed"""
if seconds < 60:
# i18n: format XX seconds as "XXs"
return _("%02ds") % (seconds)
minutes = seconds // 60
if minutes < 60:
seconds -= minutes * 60
# i18n: format X minutes and YY seconds as "XmYYs"
return _("%dm%02ds") % (minutes, seconds)
# we're going to ignore seconds in this case
minutes += 1
hours = minutes // 60
minutes -= hours * 60
if hours < 30:
# i18n: format X hours and YY minutes as "XhYYm"
return _("%dh%02dm") % (hours, minutes)
# we're going to ignore minutes in this case
hours += 1
days = hours // 24
hours -= days * 24
if days < 15:
# i18n: format X days and YY hours as "XdYYh"
return _("%dd%02dh") % (days, hours)
# we're going to ignore hours in this case
days += 1
weeks = days // 7
days -= weeks * 7
if weeks < 55:
# i18n: format X weeks and YY days as "XwYYd"
return _("%dw%02dd") % (weeks, days)
# we're going to ignore days and treat a year as 52 weeks
weeks += 1
years = weeks // 52
weeks -= years * 52
# i18n: format X years and YY weeks as "XyYYw"
return _("%dy%02dw") % (years, weeks)
# file_write() and file_flush() of Python 2 do not restart on EINTR if
# the file is attached to a "slow" device (e.g. a terminal) and raise
# IOError. We cannot know how many bytes would be written by file_write(),
# but a progress text is known to be short enough to be written by a
# single write() syscall, so we can just retry file_write() with the whole
# text. (issue5532)
#
# This should be a short-term workaround. We'll need to fix every occurrence
# of write() to a terminal or pipe.
def _eintrretry(func, *args):
while True:
try:
return func(*args)
except IOError as err:
if err.errno == errno.EINTR:
continue
raise
class progbar(object):
def __init__(self, ui):
self.ui = ui
self._refreshlock = threading.Lock()
self.resetstate()
def resetstate(self):
self.topics = []
self.topicstates = {}
self.starttimes = {}
self.startvals = {}
self.printed = False
self.lastprint = time.time() + float(self.ui.config(
'progress', 'delay'))
self.curtopic = None
self.lasttopic = None
self.indetcount = 0
self.refresh = float(self.ui.config(
'progress', 'refresh'))
self.changedelay = max(3 * self.refresh,
float(self.ui.config(
'progress', 'changedelay')))
self.order = self.ui.configlist('progress', 'format')
self.estimateinterval = self.ui.configwith(
float, 'progress', 'estimateinterval')
def show(self, now, topic, pos, item, unit, total):
if not shouldprint(self.ui):
return
termwidth = self.width()
self.printed = True
head = ''
needprogress = False
tail = ''
for indicator in self.order:
add = ''
if indicator == 'topic':
add = topic
elif indicator == 'number':
if total:
add = ('% ' + str(len(str(total))) +
's/%s') % (pos, total)
else:
add = str(pos)
elif indicator.startswith('item') and item:
slice = 'end'
if '-' in indicator:
wid = int(indicator.split('-')[1])
elif '+' in indicator:
slice = 'beginning'
wid = int(indicator.split('+')[1])
else:
wid = 20
if slice == 'end':
add = encoding.trim(item, wid, leftside=True)
else:
add = encoding.trim(item, wid)
add += (wid - encoding.colwidth(add)) * ' '
elif indicator == 'bar':
add = ''
needprogress = True
elif indicator == 'unit' and unit:
add = unit
elif indicator == 'estimate':
add = self.estimate(topic, pos, total, now)
elif indicator == 'speed':
add = self.speed(topic, pos, unit, now)
if not needprogress:
head = spacejoin(head, add)
else:
tail = spacejoin(tail, add)
if needprogress:
used = 0
if head:
used += encoding.colwidth(head) + 1
if tail:
used += encoding.colwidth(tail) + 1
progwidth = termwidth - used - 3
if total and pos <= total:
amt = pos * progwidth // total
bar = '=' * (amt - 1)
if amt > 0:
bar += '>'
bar += ' ' * (progwidth - amt)
else:
progwidth -= 3
self.indetcount += 1
# mod the count by twice the width so we can make the
# cursor bounce between the right and left sides
amt = self.indetcount % (2 * progwidth)
amt -= progwidth
bar = (' ' * int(progwidth - abs(amt)) + '<=>' +
' ' * int(abs(amt)))
prog = ''.join(('[', bar, ']'))
out = spacejoin(head, prog, tail)
else:
out = spacejoin(head, tail)
self._writeerr('\r' + encoding.trim(out, termwidth))
self.lasttopic = topic
self._flusherr()
def clear(self):
if not self.printed or not self.lastprint or not shouldprint(self.ui):
return
self._writeerr('\r%s\r' % (' ' * self.width()))
if self.printed:
# force immediate re-paint of progress bar
self.lastprint = 0
def complete(self):
if not shouldprint(self.ui):
return
if self.ui.configbool('progress', 'clear-complete'):
self.clear()
else:
self._writeerr('\n')
self._flusherr()
def _flusherr(self):
_eintrretry(self.ui.ferr.flush)
def _writeerr(self, msg):
_eintrretry(self.ui.ferr.write, msg)
def width(self):
tw = self.ui.termwidth()
return min(int(self.ui.config('progress', 'width', default=tw)), tw)
def estimate(self, topic, pos, total, now):
if total is None:
return ''
initialpos = self.startvals[topic]
target = total - initialpos
delta = pos - initialpos
if delta > 0:
elapsed = now - self.starttimes[topic]
seconds = (elapsed * (target - delta)) // delta + 1
return fmtremaining(seconds)
return ''
def speed(self, topic, pos, unit, now):
initialpos = self.startvals[topic]
delta = pos - initialpos
elapsed = now - self.starttimes[topic]
if elapsed > 0:
return _('%d %s/sec') % (delta / elapsed, unit)
return ''
def _oktoprint(self, now):
'''Check if conditions are met to print - e.g. changedelay elapsed'''
if (self.lasttopic is None # first time we printed
# not a topic change
or self.curtopic == self.lasttopic
# it's been long enough we should print anyway
or now - self.lastprint >= self.changedelay):
return True
else:
return False
def _calibrateestimate(self, topic, now, pos):
'''Adjust starttimes and startvals for topic so ETA works better
If progress is non-linear (ex. get much slower in the last minute),
it's more friendly to only use a recent time span for ETA and speed
calculation.
[======================================> ]
^^^^^^^
estimateinterval, only use this for estimation
'''
interval = self.estimateinterval
if interval <= 0:
return
elapsed = now - self.starttimes[topic]
if elapsed > interval:
delta = pos - self.startvals[topic]
newdelta = delta * interval / elapsed
# If a stall happens temporarily, ETA could change dramatically
# frequently. This is to avoid such dramatical change and make ETA
# smoother.
if newdelta < 0.1:
return
self.startvals[topic] = pos - newdelta
self.starttimes[topic] = now - interval
def progress(self, topic, pos, item='', unit='', total=None):
now = time.time()
self._refreshlock.acquire()
try:
if pos is None:
self.starttimes.pop(topic, None)
self.startvals.pop(topic, None)
self.topicstates.pop(topic, None)
# reset the progress bar if this is the outermost topic
if self.topics and self.topics[0] == topic and self.printed:
self.complete()
self.resetstate()
# truncate the list of topics assuming all topics within
# this one are also closed
if topic in self.topics:
self.topics = self.topics[:self.topics.index(topic)]
# reset the last topic to the one we just unwound to,
# so that higher-level topics will be stickier than
# lower-level topics
if self.topics:
self.lasttopic = self.topics[-1]
else:
self.lasttopic = None
else:
if topic not in self.topics:
self.starttimes[topic] = now
self.startvals[topic] = pos
self.topics.append(topic)
self.topicstates[topic] = pos, item, unit, total
self.curtopic = topic
self._calibrateestimate(topic, now, pos)
if now - self.lastprint >= self.refresh and self.topics:
if self._oktoprint(now):
self.lastprint = now
self.show(now, topic, *self.topicstates[topic])
finally:
self._refreshlock.release()