##// END OF EJS Templates
convert/svn: delegate to svn bindings if HTTP probe fails...
convert/svn: delegate to svn bindings if HTTP probe fails convert extension tries to guess the remote repository type with HTTP probes. Unfortunately, it does not handle authentication or HTTPS handshakes, so regular svn repositories may be excluded. Instead, when a non-404 error is retrieved, we keep trying with the svn bindings. The drawback is missing svn bindings will make the conversion to fail even for non-svn targets. This can be avoided with --source.

File last commit:

r8465:23429ebd default
r9829:1b2516a5 default
Show More
ancestor.py
85 lines | 2.3 KiB | text/x-python | PythonLexer
# ancestor.py - generic DAG ancestor algorithm for mercurial
#
# Copyright 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2, incorporated herein by reference.
import heapq
def ancestor(a, b, pfunc):
"""
return the least common ancestor of nodes a and b or None if there
is no such ancestor.
pfunc must return a list of parent vertices
"""
if a == b:
return a
# find depth from root of all ancestors
parentcache = {}
visit = [a, b]
depth = {}
while visit:
vertex = visit[-1]
pl = pfunc(vertex)
parentcache[vertex] = pl
if not pl:
depth[vertex] = 0
visit.pop()
else:
for p in pl:
if p == a or p == b: # did we find a or b as a parent?
return p # we're done
if p not in depth:
visit.append(p)
if visit[-1] == vertex:
depth[vertex] = min([depth[p] for p in pl]) - 1
visit.pop()
# traverse ancestors in order of decreasing distance from root
def ancestors(vertex):
h = [(depth[vertex], vertex)]
seen = set()
while h:
d, n = heapq.heappop(h)
if n not in seen:
seen.add(n)
yield (d, n)
for p in parentcache[n]:
heapq.heappush(h, (depth[p], p))
def generations(vertex):
sg, s = None, set()
for g, v in ancestors(vertex):
if g != sg:
if sg:
yield sg, s
sg, s = g, set((v,))
else:
s.add(v)
yield sg, s
x = generations(a)
y = generations(b)
gx = x.next()
gy = y.next()
# increment each ancestor list until it is closer to root than
# the other, or they match
try:
while 1:
if gx[0] == gy[0]:
for v in gx[1]:
if v in gy[1]:
return v
gy = y.next()
gx = x.next()
elif gx[0] > gy[0]:
gy = y.next()
else:
gx = x.next()
except StopIteration:
return None