##// END OF EJS Templates
match: add `filepath:` pattern to match an exact filepath relative to the root...
match: add `filepath:` pattern to match an exact filepath relative to the root It's useful in certain automated workflows to make sure we recurse in directories whose name conflicts with files in other revisions. In addition it makes it possible to avoid building a potentially costly regex, improving performance when the set of files to match explicitly is large. The benchmark below are run in the following configuration : # data-env-vars.name = mozilla-central-2018-08-01-zstd-sparse-revlog # benchmark.name = files # benchmark.variants.rev = tip # benchmark.variants.files = all-list-filepath-sorted # bin-env-vars.hg.flavor = no-rust It also includes timings using the re2 engine (through the `google-re2` module) to show how much can be saved by just using a better regexp engine. Pattern time (seconds) time using re2 ----------------------------------------------------------- just "." 0.4 0.4 list of "filepath:…" 1.3 1.3 list of "path:…" 25.7 3.9 list of patterns 29.7 10.4 As you can see, Without re2, using "filepath:" instead of "path:" is a huge win. With re2, it is still about three times faster to not have to build the regex.

File last commit:

r50538:e1c586b9 default
r51588:1c31b343 default
Show More
_compat.py
185 lines | 5.4 KiB | text/x-python | PythonLexer
# SPDX-License-Identifier: MIT
import inspect
import platform
import sys
import threading
import types
import warnings
from collections.abc import Mapping, Sequence # noqa
PYPY = platform.python_implementation() == "PyPy"
PY36 = sys.version_info[:2] >= (3, 6)
HAS_F_STRINGS = PY36
PY310 = sys.version_info[:2] >= (3, 10)
if PYPY or PY36:
ordered_dict = dict
else:
from collections import OrderedDict
ordered_dict = OrderedDict
def just_warn(*args, **kw):
warnings.warn(
"Running interpreter doesn't sufficiently support code object "
"introspection. Some features like bare super() or accessing "
"__class__ will not work with slotted classes.",
RuntimeWarning,
stacklevel=2,
)
class _AnnotationExtractor:
"""
Extract type annotations from a callable, returning None whenever there
is none.
"""
__slots__ = ["sig"]
def __init__(self, callable):
try:
self.sig = inspect.signature(callable)
except (ValueError, TypeError): # inspect failed
self.sig = None
def get_first_param_type(self):
"""
Return the type annotation of the first argument if it's not empty.
"""
if not self.sig:
return None
params = list(self.sig.parameters.values())
if params and params[0].annotation is not inspect.Parameter.empty:
return params[0].annotation
return None
def get_return_type(self):
"""
Return the return type if it's not empty.
"""
if (
self.sig
and self.sig.return_annotation is not inspect.Signature.empty
):
return self.sig.return_annotation
return None
def make_set_closure_cell():
"""Return a function of two arguments (cell, value) which sets
the value stored in the closure cell `cell` to `value`.
"""
# pypy makes this easy. (It also supports the logic below, but
# why not do the easy/fast thing?)
if PYPY:
def set_closure_cell(cell, value):
cell.__setstate__((value,))
return set_closure_cell
# Otherwise gotta do it the hard way.
# Create a function that will set its first cellvar to `value`.
def set_first_cellvar_to(value):
x = value
return
# This function will be eliminated as dead code, but
# not before its reference to `x` forces `x` to be
# represented as a closure cell rather than a local.
def force_x_to_be_a_cell(): # pragma: no cover
return x
try:
# Extract the code object and make sure our assumptions about
# the closure behavior are correct.
co = set_first_cellvar_to.__code__
if co.co_cellvars != ("x",) or co.co_freevars != ():
raise AssertionError # pragma: no cover
# Convert this code object to a code object that sets the
# function's first _freevar_ (not cellvar) to the argument.
if sys.version_info >= (3, 8):
def set_closure_cell(cell, value):
cell.cell_contents = value
else:
args = [co.co_argcount]
args.append(co.co_kwonlyargcount)
args.extend(
[
co.co_nlocals,
co.co_stacksize,
co.co_flags,
co.co_code,
co.co_consts,
co.co_names,
co.co_varnames,
co.co_filename,
co.co_name,
co.co_firstlineno,
co.co_lnotab,
# These two arguments are reversed:
co.co_cellvars,
co.co_freevars,
]
)
set_first_freevar_code = types.CodeType(*args)
def set_closure_cell(cell, value):
# Create a function using the set_first_freevar_code,
# whose first closure cell is `cell`. Calling it will
# change the value of that cell.
setter = types.FunctionType(
set_first_freevar_code, {}, "setter", (), (cell,)
)
# And call it to set the cell.
setter(value)
# Make sure it works on this interpreter:
def make_func_with_cell():
x = None
def func():
return x # pragma: no cover
return func
cell = make_func_with_cell().__closure__[0]
set_closure_cell(cell, 100)
if cell.cell_contents != 100:
raise AssertionError # pragma: no cover
except Exception:
return just_warn
else:
return set_closure_cell
set_closure_cell = make_set_closure_cell()
# Thread-local global to track attrs instances which are already being repr'd.
# This is needed because there is no other (thread-safe) way to pass info
# about the instances that are already being repr'd through the call stack
# in order to ensure we don't perform infinite recursion.
#
# For instance, if an instance contains a dict which contains that instance,
# we need to know that we're already repr'ing the outside instance from within
# the dict's repr() call.
#
# This lives here rather than in _make.py so that the functions in _make.py
# don't have a direct reference to the thread-local in their globals dict.
# If they have such a reference, it breaks cloudpickle.
repr_context = threading.local()