##// END OF EJS Templates
wireproto: support /api/* URL space for exposing APIs...
wireproto: support /api/* URL space for exposing APIs I will soon be introducing a new version of the HTTP wire protocol. One of the things I want to change with it is the URL routing. I want to rely on URL paths to define endpoints rather than the "cmd" query string argument. That should be pretty straightforward. I was thinking about what URL space to reserve for the new protocol. We /could/ put everything at a top-level path. e.g. /wireproto/* or /http-v2-wireproto/*. However, these constrain us a bit because they assume there will only be 1 API: version 2 of the HTTP wire protocol. I think there is room to grow multiple APIs. For example, there may someday be a proper JSON API to query or even manipulate the repository. And I don't think we should have to create a new top-level URL space for each API nor should we attempt to shoehorn each future API into the same shared URL space: that would just be too chaotic. This commits reserves the /api/* URL space for all our future API needs. Essentially, all requests to /api/* get routed to a new WSGI handler. By default, it 404's the entire URL space unless the "api server" feature is enabled. When enabled, requests to "/api" list available APIs. URLs of the form /api/<name>/* are reserved for a particular named API. Behavior within each API is left up to that API. So, we can grow new APIs easily without worrying about URL space conflicts. APIs can be registered by adding entries to a global dict. This allows extensions to provide their own APIs should they choose to do so. This is probably a premature feature. But IMO the code is easier to read if we're not dealing with API-specific behavior like config option querying inline. To prove it works, we implement a very basic API for version 2 of the HTTP wire protocol. It does nothing of value except facilitate testing of the /api/* URL space. We currently emit plain text responses for all /api/* endpoints. There's definitely room to look at Accept and other request headers to vary the response format. But we have to start somewhere. Differential Revision: https://phab.mercurial-scm.org/D2834

File last commit:

r34950:ff178743 stable
r37064:1cfef569 default
Show More
merge-tools.txt
85 lines | 3.6 KiB | text/plain | TextLexer
To merge files Mercurial uses merge tools.
A merge tool combines two different versions of a file into a merged
file. Merge tools are given the two files and the greatest common
ancestor of the two file versions, so they can determine the changes
made on both branches.
Merge tools are used both for :hg:`resolve`, :hg:`merge`, :hg:`update`,
:hg:`backout` and in several extensions.
Usually, the merge tool tries to automatically reconcile the files by
combining all non-overlapping changes that occurred separately in
the two different evolutions of the same initial base file. Furthermore, some
interactive merge programs make it easier to manually resolve
conflicting merges, either in a graphical way, or by inserting some
conflict markers. Mercurial does not include any interactive merge
programs but relies on external tools for that.
Available merge tools
=====================
External merge tools and their properties are configured in the
merge-tools configuration section - see hgrc(5) - but they can often just
be named by their executable.
A merge tool is generally usable if its executable can be found on the
system and if it can handle the merge. The executable is found if it
is an absolute or relative executable path or the name of an
application in the executable search path. The tool is assumed to be
able to handle the merge if it can handle symlinks if the file is a
symlink, if it can handle binary files if the file is binary, and if a
GUI is available if the tool requires a GUI.
There are some internal merge tools which can be used. The internal
merge tools are:
.. internaltoolsmarker
Internal tools are always available and do not require a GUI but will by default
not handle symlinks or binary files.
Choosing a merge tool
=====================
Mercurial uses these rules when deciding which merge tool to use:
1. If a tool has been specified with the --tool option to merge or resolve, it
is used. If it is the name of a tool in the merge-tools configuration, its
configuration is used. Otherwise the specified tool must be executable by
the shell.
2. If the ``HGMERGE`` environment variable is present, its value is used and
must be executable by the shell.
3. If the filename of the file to be merged matches any of the patterns in the
merge-patterns configuration section, the first usable merge tool
corresponding to a matching pattern is used. Here, binary capabilities of the
merge tool are not considered.
4. If ui.merge is set it will be considered next. If the value is not the name
of a configured tool, the specified value is used and must be executable by
the shell. Otherwise the named tool is used if it is usable.
5. If any usable merge tools are present in the merge-tools configuration
section, the one with the highest priority is used.
6. If a program named ``hgmerge`` can be found on the system, it is used - but
it will by default not be used for symlinks and binary files.
7. If the file to be merged is not binary and is not a symlink, then
internal ``:merge`` is used.
8. Otherwise, ``:prompt`` is used.
.. note::
After selecting a merge program, Mercurial will by default attempt
to merge the files using a simple merge algorithm first. Only if it doesn't
succeed because of conflicting changes will Mercurial actually execute the
merge program. Whether to use the simple merge algorithm first can be
controlled by the premerge setting of the merge tool. Premerge is enabled by
default unless the file is binary or a symlink.
See the merge-tools and ui sections of hgrc(5) for details on the
configuration of merge tools.