##// END OF EJS Templates
errors: add config that lets user get more detailed exit codes...
errors: add config that lets user get more detailed exit codes This adds an experimental config that lets the user get more detailed exit codes. For example, there will be a specific error code for input/user errors. This is part of https://www.mercurial-scm.org/wiki/ErrorCategoriesPlan. I've made the config part of tweakdefaults. I've made the config enabled by default in tests. My reasoning is that we want to see that each specific error case gives the right exit code and we don't want to duplicate all error cases in the entire test suite. It also makes it easy to grep the `.t` files for `[255]` to find which cases we have left to fix. The logic for the current exit codes is quite simple, so I'm not too worried about regressions there. I've added a test case specifically for the "legacy" exit codes. I've set the detailed exit status only for the case of `InterventionRequired` and `SystemExit` for now (the cases where we currently return something other than 255), just to show that it works. Differential Revision: https://phab.mercurial-scm.org/D9238

File last commit:

r43346:2372284d default
r46430:21733e8c default
Show More
perf-revlog-write-plot.py
126 lines | 3.2 KiB | text/x-python | PythonLexer
/ contrib / perf-utils / perf-revlog-write-plot.py
#!/usr/bin/env python
#
# Copyright 2018 Paul Morelle <Paul.Morelle@octobus.net>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
#
# This script use the output of `hg perfrevlogwrite -T json --details` to draw
# various plot related to write performance in a revlog
#
# usage: perf-revlog-write-plot.py details.json
from __future__ import absolute_import, print_function
import json
import re
import numpy as np
import scipy.signal
from matplotlib import (
pyplot as plt,
ticker as mticker,
)
def plot(data, title=None):
items = {}
re_title = re.compile(r'^revisions #\d+ of \d+, rev (\d+)$')
for item in data:
m = re_title.match(item['title'])
if m is None:
continue
rev = int(m.group(1))
items[rev] = item
min_rev = min(items.keys())
max_rev = max(items.keys())
ary = np.empty((2, max_rev - min_rev + 1))
for rev, item in items.items():
ary[0][rev - min_rev] = rev
ary[1][rev - min_rev] = item['wall']
fig = plt.figure()
comb_plt = fig.add_subplot(211)
other_plt = fig.add_subplot(212)
comb_plt.plot(
ary[0], np.cumsum(ary[1]), color='red', linewidth=1, label='comb'
)
plots = []
p = other_plt.plot(ary[0], ary[1], color='red', linewidth=1, label='wall')
plots.append(p)
colors = {
10: ('green', 'xkcd:grass green'),
100: ('blue', 'xkcd:bright blue'),
1000: ('purple', 'xkcd:dark pink'),
}
for n, color in colors.items():
avg_n = np.convolve(ary[1], np.full(n, 1.0 / n), 'valid')
p = other_plt.plot(
ary[0][n - 1 :],
avg_n,
color=color[0],
linewidth=1,
label='avg time last %d' % n,
)
plots.append(p)
med_n = scipy.signal.medfilt(ary[1], n + 1)
p = other_plt.plot(
ary[0],
med_n,
color=color[1],
linewidth=1,
label='median time last %d' % n,
)
plots.append(p)
formatter = mticker.ScalarFormatter()
formatter.set_scientific(False)
formatter.set_useOffset(False)
comb_plt.grid()
comb_plt.xaxis.set_major_formatter(formatter)
comb_plt.legend()
other_plt.grid()
other_plt.xaxis.set_major_formatter(formatter)
leg = other_plt.legend()
leg2plot = {}
for legline, plot in zip(leg.get_lines(), plots):
legline.set_picker(5)
leg2plot[legline] = plot
def onpick(event):
legline = event.artist
plot = leg2plot[legline]
visible = not plot[0].get_visible()
for l in plot:
l.set_visible(visible)
if visible:
legline.set_alpha(1.0)
else:
legline.set_alpha(0.2)
fig.canvas.draw()
if title is not None:
fig.canvas.set_window_title(title)
fig.canvas.mpl_connect('pick_event', onpick)
plt.show()
if __name__ == '__main__':
import sys
if len(sys.argv) > 1:
print('reading from %r' % sys.argv[1])
with open(sys.argv[1], 'r') as fp:
plot(json.load(fp), title=sys.argv[1])
else:
print('reading from stdin')
plot(json.load(sys.stdin))