##// END OF EJS Templates
share: add --relative flag to store a relative path to the source...
share: add --relative flag to store a relative path to the source Storing a relative path the source repository is useful when exporting repositories over the network or when they're located on external drives where the mountpoint isn't always fixed. Currently, Mercurial interprets paths in `.hg/shared` relative to $PWD. I suspect this is very much unintentional, and you have to manually edit `.hg/shared` in order to trigger this behaviour. However, on the off chance that someone might rely on it, I added a new capability called 'relshared'. In addition, this makes earlier versions of Mercurial fail with a graceful error. I should note that I haven't tested this patch on Windows.

File last commit:

r30895:c32454d6 default
r31133:23080c03 default
Show More
decompressor.c
845 lines | 22.6 KiB | text/x-c | CLexer
/**
* Copyright (c) 2016-present, Gregory Szorc
* All rights reserved.
*
* This software may be modified and distributed under the terms
* of the BSD license. See the LICENSE file for details.
*/
#include "python-zstandard.h"
extern PyObject* ZstdError;
ZSTD_DStream* DStream_from_ZstdDecompressor(ZstdDecompressor* decompressor) {
ZSTD_DStream* dstream;
void* dictData = NULL;
size_t dictSize = 0;
size_t zresult;
dstream = ZSTD_createDStream();
if (!dstream) {
PyErr_SetString(ZstdError, "could not create DStream");
return NULL;
}
if (decompressor->dict) {
dictData = decompressor->dict->dictData;
dictSize = decompressor->dict->dictSize;
}
if (dictData) {
zresult = ZSTD_initDStream_usingDict(dstream, dictData, dictSize);
}
else {
zresult = ZSTD_initDStream(dstream);
}
if (ZSTD_isError(zresult)) {
PyErr_Format(ZstdError, "could not initialize DStream: %s",
ZSTD_getErrorName(zresult));
return NULL;
}
return dstream;
}
PyDoc_STRVAR(Decompressor__doc__,
"ZstdDecompressor(dict_data=None)\n"
"\n"
"Create an object used to perform Zstandard decompression.\n"
"\n"
"An instance can perform multiple decompression operations."
);
static int Decompressor_init(ZstdDecompressor* self, PyObject* args, PyObject* kwargs) {
static char* kwlist[] = {
"dict_data",
NULL
};
ZstdCompressionDict* dict = NULL;
self->dctx = NULL;
self->dict = NULL;
self->ddict = NULL;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|O!:ZstdDecompressor", kwlist,
&ZstdCompressionDictType, &dict)) {
return -1;
}
/* TODO lazily initialize the reference ZSTD_DCtx on first use since
not instances of ZstdDecompressor will use a ZSTD_DCtx. */
self->dctx = ZSTD_createDCtx();
if (!self->dctx) {
PyErr_NoMemory();
goto except;
}
if (dict) {
self->dict = dict;
Py_INCREF(dict);
}
return 0;
except:
if (self->dctx) {
ZSTD_freeDCtx(self->dctx);
self->dctx = NULL;
}
return -1;
}
static void Decompressor_dealloc(ZstdDecompressor* self) {
if (self->dctx) {
ZSTD_freeDCtx(self->dctx);
}
Py_XDECREF(self->dict);
if (self->ddict) {
ZSTD_freeDDict(self->ddict);
self->ddict = NULL;
}
PyObject_Del(self);
}
PyDoc_STRVAR(Decompressor_copy_stream__doc__,
"copy_stream(ifh, ofh[, read_size=default, write_size=default]) -- decompress data between streams\n"
"\n"
"Compressed data will be read from ``ifh``, decompressed, and written to\n"
"``ofh``. ``ifh`` must have a ``read(size)`` method. ``ofh`` must have a\n"
"``write(data)`` method.\n"
"\n"
"The optional ``read_size`` and ``write_size`` arguments control the chunk\n"
"size of data that is ``read()`` and ``write()`` between streams. They default\n"
"to the default input and output sizes of zstd decompressor streams.\n"
);
static PyObject* Decompressor_copy_stream(ZstdDecompressor* self, PyObject* args, PyObject* kwargs) {
static char* kwlist[] = {
"ifh",
"ofh",
"read_size",
"write_size",
NULL
};
PyObject* source;
PyObject* dest;
size_t inSize = ZSTD_DStreamInSize();
size_t outSize = ZSTD_DStreamOutSize();
ZSTD_DStream* dstream;
ZSTD_inBuffer input;
ZSTD_outBuffer output;
Py_ssize_t totalRead = 0;
Py_ssize_t totalWrite = 0;
char* readBuffer;
Py_ssize_t readSize;
PyObject* readResult;
PyObject* res = NULL;
size_t zresult = 0;
PyObject* writeResult;
PyObject* totalReadPy;
PyObject* totalWritePy;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OO|kk:copy_stream", kwlist,
&source, &dest, &inSize, &outSize)) {
return NULL;
}
if (!PyObject_HasAttrString(source, "read")) {
PyErr_SetString(PyExc_ValueError, "first argument must have a read() method");
return NULL;
}
if (!PyObject_HasAttrString(dest, "write")) {
PyErr_SetString(PyExc_ValueError, "second argument must have a write() method");
return NULL;
}
/* Prevent free on uninitialized memory in finally. */
output.dst = NULL;
dstream = DStream_from_ZstdDecompressor(self);
if (!dstream) {
res = NULL;
goto finally;
}
output.dst = PyMem_Malloc(outSize);
if (!output.dst) {
PyErr_NoMemory();
res = NULL;
goto finally;
}
output.size = outSize;
output.pos = 0;
/* Read source stream until EOF */
while (1) {
readResult = PyObject_CallMethod(source, "read", "n", inSize);
if (!readResult) {
PyErr_SetString(ZstdError, "could not read() from source");
goto finally;
}
PyBytes_AsStringAndSize(readResult, &readBuffer, &readSize);
/* If no data was read, we're at EOF. */
if (0 == readSize) {
break;
}
totalRead += readSize;
/* Send data to decompressor */
input.src = readBuffer;
input.size = readSize;
input.pos = 0;
while (input.pos < input.size) {
Py_BEGIN_ALLOW_THREADS
zresult = ZSTD_decompressStream(dstream, &output, &input);
Py_END_ALLOW_THREADS
if (ZSTD_isError(zresult)) {
PyErr_Format(ZstdError, "zstd decompressor error: %s",
ZSTD_getErrorName(zresult));
res = NULL;
goto finally;
}
if (output.pos) {
#if PY_MAJOR_VERSION >= 3
writeResult = PyObject_CallMethod(dest, "write", "y#",
#else
writeResult = PyObject_CallMethod(dest, "write", "s#",
#endif
output.dst, output.pos);
Py_XDECREF(writeResult);
totalWrite += output.pos;
output.pos = 0;
}
}
}
/* Source stream is exhausted. Finish up. */
ZSTD_freeDStream(dstream);
dstream = NULL;
totalReadPy = PyLong_FromSsize_t(totalRead);
totalWritePy = PyLong_FromSsize_t(totalWrite);
res = PyTuple_Pack(2, totalReadPy, totalWritePy);
Py_DecRef(totalReadPy);
Py_DecRef(totalWritePy);
finally:
if (output.dst) {
PyMem_Free(output.dst);
}
if (dstream) {
ZSTD_freeDStream(dstream);
}
return res;
}
PyDoc_STRVAR(Decompressor_decompress__doc__,
"decompress(data[, max_output_size=None]) -- Decompress data in its entirety\n"
"\n"
"This method will decompress the entirety of the argument and return the\n"
"result.\n"
"\n"
"The input bytes are expected to contain a full Zstandard frame (something\n"
"compressed with ``ZstdCompressor.compress()`` or similar). If the input does\n"
"not contain a full frame, an exception will be raised.\n"
"\n"
"If the frame header of the compressed data does not contain the content size\n"
"``max_output_size`` must be specified or ``ZstdError`` will be raised. An\n"
"allocation of size ``max_output_size`` will be performed and an attempt will\n"
"be made to perform decompression into that buffer. If the buffer is too\n"
"small or cannot be allocated, ``ZstdError`` will be raised. The buffer will\n"
"be resized if it is too large.\n"
"\n"
"Uncompressed data could be much larger than compressed data. As a result,\n"
"calling this function could result in a very large memory allocation being\n"
"performed to hold the uncompressed data. Therefore it is **highly**\n"
"recommended to use a streaming decompression method instead of this one.\n"
);
PyObject* Decompressor_decompress(ZstdDecompressor* self, PyObject* args, PyObject* kwargs) {
static char* kwlist[] = {
"data",
"max_output_size",
NULL
};
const char* source;
Py_ssize_t sourceSize;
Py_ssize_t maxOutputSize = 0;
unsigned long long decompressedSize;
size_t destCapacity;
PyObject* result = NULL;
void* dictData = NULL;
size_t dictSize = 0;
size_t zresult;
#if PY_MAJOR_VERSION >= 3
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "y#|n:decompress",
#else
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "s#|n:decompress",
#endif
kwlist, &source, &sourceSize, &maxOutputSize)) {
return NULL;
}
if (self->dict) {
dictData = self->dict->dictData;
dictSize = self->dict->dictSize;
}
if (dictData && !self->ddict) {
Py_BEGIN_ALLOW_THREADS
self->ddict = ZSTD_createDDict_byReference(dictData, dictSize);
Py_END_ALLOW_THREADS
if (!self->ddict) {
PyErr_SetString(ZstdError, "could not create decompression dict");
return NULL;
}
}
decompressedSize = ZSTD_getDecompressedSize(source, sourceSize);
/* 0 returned if content size not in the zstd frame header */
if (0 == decompressedSize) {
if (0 == maxOutputSize) {
PyErr_SetString(ZstdError, "input data invalid or missing content size "
"in frame header");
return NULL;
}
else {
result = PyBytes_FromStringAndSize(NULL, maxOutputSize);
destCapacity = maxOutputSize;
}
}
else {
result = PyBytes_FromStringAndSize(NULL, decompressedSize);
destCapacity = decompressedSize;
}
if (!result) {
return NULL;
}
Py_BEGIN_ALLOW_THREADS
if (self->ddict) {
zresult = ZSTD_decompress_usingDDict(self->dctx,
PyBytes_AsString(result), destCapacity,
source, sourceSize, self->ddict);
}
else {
zresult = ZSTD_decompressDCtx(self->dctx,
PyBytes_AsString(result), destCapacity, source, sourceSize);
}
Py_END_ALLOW_THREADS
if (ZSTD_isError(zresult)) {
PyErr_Format(ZstdError, "decompression error: %s", ZSTD_getErrorName(zresult));
Py_DecRef(result);
return NULL;
}
else if (decompressedSize && zresult != decompressedSize) {
PyErr_Format(ZstdError, "decompression error: decompressed %zu bytes; expected %llu",
zresult, decompressedSize);
Py_DecRef(result);
return NULL;
}
else if (zresult < destCapacity) {
if (_PyBytes_Resize(&result, zresult)) {
Py_DecRef(result);
return NULL;
}
}
return result;
}
PyDoc_STRVAR(Decompressor_decompressobj__doc__,
"decompressobj()\n"
"\n"
"Incrementally feed data into a decompressor.\n"
"\n"
"The returned object exposes a ``decompress(data)`` method. This makes it\n"
"compatible with ``zlib.decompressobj`` and ``bz2.BZ2Decompressor`` so that\n"
"callers can swap in the zstd decompressor while using the same API.\n"
);
static ZstdDecompressionObj* Decompressor_decompressobj(ZstdDecompressor* self) {
ZstdDecompressionObj* result = PyObject_New(ZstdDecompressionObj, &ZstdDecompressionObjType);
if (!result) {
return NULL;
}
result->dstream = DStream_from_ZstdDecompressor(self);
if (!result->dstream) {
Py_DecRef((PyObject*)result);
return NULL;
}
result->decompressor = self;
Py_INCREF(result->decompressor);
result->finished = 0;
return result;
}
PyDoc_STRVAR(Decompressor_read_from__doc__,
"read_from(reader[, read_size=default, write_size=default, skip_bytes=0])\n"
"Read compressed data and return an iterator\n"
"\n"
"Returns an iterator of decompressed data chunks produced from reading from\n"
"the ``reader``.\n"
"\n"
"Compressed data will be obtained from ``reader`` by calling the\n"
"``read(size)`` method of it. The source data will be streamed into a\n"
"decompressor. As decompressed data is available, it will be exposed to the\n"
"returned iterator.\n"
"\n"
"Data is ``read()`` in chunks of size ``read_size`` and exposed to the\n"
"iterator in chunks of size ``write_size``. The default values are the input\n"
"and output sizes for a zstd streaming decompressor.\n"
"\n"
"There is also support for skipping the first ``skip_bytes`` of data from\n"
"the source.\n"
);
static ZstdDecompressorIterator* Decompressor_read_from(ZstdDecompressor* self, PyObject* args, PyObject* kwargs) {
static char* kwlist[] = {
"reader",
"read_size",
"write_size",
"skip_bytes",
NULL
};
PyObject* reader;
size_t inSize = ZSTD_DStreamInSize();
size_t outSize = ZSTD_DStreamOutSize();
ZstdDecompressorIterator* result;
size_t skipBytes = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O|kkk:read_from", kwlist,
&reader, &inSize, &outSize, &skipBytes)) {
return NULL;
}
if (skipBytes >= inSize) {
PyErr_SetString(PyExc_ValueError,
"skip_bytes must be smaller than read_size");
return NULL;
}
result = PyObject_New(ZstdDecompressorIterator, &ZstdDecompressorIteratorType);
if (!result) {
return NULL;
}
result->decompressor = NULL;
result->reader = NULL;
result->buffer = NULL;
result->dstream = NULL;
result->input.src = NULL;
result->output.dst = NULL;
if (PyObject_HasAttrString(reader, "read")) {
result->reader = reader;
Py_INCREF(result->reader);
}
else if (1 == PyObject_CheckBuffer(reader)) {
/* Object claims it is a buffer. Try to get a handle to it. */
result->buffer = PyMem_Malloc(sizeof(Py_buffer));
if (!result->buffer) {
goto except;
}
memset(result->buffer, 0, sizeof(Py_buffer));
if (0 != PyObject_GetBuffer(reader, result->buffer, PyBUF_CONTIG_RO)) {
goto except;
}
result->bufferOffset = 0;
}
else {
PyErr_SetString(PyExc_ValueError,
"must pass an object with a read() method or conforms to buffer protocol");
goto except;
}
result->decompressor = self;
Py_INCREF(result->decompressor);
result->inSize = inSize;
result->outSize = outSize;
result->skipBytes = skipBytes;
result->dstream = DStream_from_ZstdDecompressor(self);
if (!result->dstream) {
goto except;
}
result->input.src = PyMem_Malloc(inSize);
if (!result->input.src) {
PyErr_NoMemory();
goto except;
}
result->input.size = 0;
result->input.pos = 0;
result->output.dst = NULL;
result->output.size = 0;
result->output.pos = 0;
result->readCount = 0;
result->finishedInput = 0;
result->finishedOutput = 0;
goto finally;
except:
Py_CLEAR(result->reader);
if (result->buffer) {
PyBuffer_Release(result->buffer);
Py_CLEAR(result->buffer);
}
Py_CLEAR(result);
finally:
return result;
}
PyDoc_STRVAR(Decompressor_write_to__doc__,
"Create a context manager to write decompressed data to an object.\n"
"\n"
"The passed object must have a ``write()`` method.\n"
"\n"
"The caller feeds intput data to the object by calling ``write(data)``.\n"
"Decompressed data is written to the argument given as it is decompressed.\n"
"\n"
"An optional ``write_size`` argument defines the size of chunks to\n"
"``write()`` to the writer. It defaults to the default output size for a zstd\n"
"streaming decompressor.\n"
);
static ZstdDecompressionWriter* Decompressor_write_to(ZstdDecompressor* self, PyObject* args, PyObject* kwargs) {
static char* kwlist[] = {
"writer",
"write_size",
NULL
};
PyObject* writer;
size_t outSize = ZSTD_DStreamOutSize();
ZstdDecompressionWriter* result;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O|k:write_to", kwlist,
&writer, &outSize)) {
return NULL;
}
if (!PyObject_HasAttrString(writer, "write")) {
PyErr_SetString(PyExc_ValueError, "must pass an object with a write() method");
return NULL;
}
result = PyObject_New(ZstdDecompressionWriter, &ZstdDecompressionWriterType);
if (!result) {
return NULL;
}
result->decompressor = self;
Py_INCREF(result->decompressor);
result->writer = writer;
Py_INCREF(result->writer);
result->outSize = outSize;
result->entered = 0;
result->dstream = NULL;
return result;
}
PyDoc_STRVAR(Decompressor_decompress_content_dict_chain__doc__,
"Decompress a series of chunks using the content dictionary chaining technique\n"
);
static PyObject* Decompressor_decompress_content_dict_chain(PyObject* self, PyObject* args, PyObject* kwargs) {
static char* kwlist[] = {
"frames",
NULL
};
PyObject* chunks;
Py_ssize_t chunksLen;
Py_ssize_t chunkIndex;
char parity = 0;
PyObject* chunk;
char* chunkData;
Py_ssize_t chunkSize;
ZSTD_DCtx* dctx = NULL;
size_t zresult;
ZSTD_frameParams frameParams;
void* buffer1 = NULL;
size_t buffer1Size = 0;
size_t buffer1ContentSize = 0;
void* buffer2 = NULL;
size_t buffer2Size = 0;
size_t buffer2ContentSize = 0;
void* destBuffer = NULL;
PyObject* result = NULL;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O!:decompress_content_dict_chain",
kwlist, &PyList_Type, &chunks)) {
return NULL;
}
chunksLen = PyList_Size(chunks);
if (!chunksLen) {
PyErr_SetString(PyExc_ValueError, "empty input chain");
return NULL;
}
/* The first chunk should not be using a dictionary. We handle it specially. */
chunk = PyList_GetItem(chunks, 0);
if (!PyBytes_Check(chunk)) {
PyErr_SetString(PyExc_ValueError, "chunk 0 must be bytes");
return NULL;
}
/* We require that all chunks be zstd frames and that they have content size set. */
PyBytes_AsStringAndSize(chunk, &chunkData, &chunkSize);
zresult = ZSTD_getFrameParams(&frameParams, (void*)chunkData, chunkSize);
if (ZSTD_isError(zresult)) {
PyErr_SetString(PyExc_ValueError, "chunk 0 is not a valid zstd frame");
return NULL;
}
else if (zresult) {
PyErr_SetString(PyExc_ValueError, "chunk 0 is too small to contain a zstd frame");
return NULL;
}
if (0 == frameParams.frameContentSize) {
PyErr_SetString(PyExc_ValueError, "chunk 0 missing content size in frame");
return NULL;
}
dctx = ZSTD_createDCtx();
if (!dctx) {
PyErr_NoMemory();
goto finally;
}
buffer1Size = frameParams.frameContentSize;
buffer1 = PyMem_Malloc(buffer1Size);
if (!buffer1) {
goto finally;
}
Py_BEGIN_ALLOW_THREADS
zresult = ZSTD_decompressDCtx(dctx, buffer1, buffer1Size, chunkData, chunkSize);
Py_END_ALLOW_THREADS
if (ZSTD_isError(zresult)) {
PyErr_Format(ZstdError, "could not decompress chunk 0: %s", ZSTD_getErrorName(zresult));
goto finally;
}
buffer1ContentSize = zresult;
/* Special case of a simple chain. */
if (1 == chunksLen) {
result = PyBytes_FromStringAndSize(buffer1, buffer1Size);
goto finally;
}
/* This should ideally look at next chunk. But this is slightly simpler. */
buffer2Size = frameParams.frameContentSize;
buffer2 = PyMem_Malloc(buffer2Size);
if (!buffer2) {
goto finally;
}
/* For each subsequent chunk, use the previous fulltext as a content dictionary.
Our strategy is to have 2 buffers. One holds the previous fulltext (to be
used as a content dictionary) and the other holds the new fulltext. The
buffers grow when needed but never decrease in size. This limits the
memory allocator overhead.
*/
for (chunkIndex = 1; chunkIndex < chunksLen; chunkIndex++) {
chunk = PyList_GetItem(chunks, chunkIndex);
if (!PyBytes_Check(chunk)) {
PyErr_Format(PyExc_ValueError, "chunk %zd must be bytes", chunkIndex);
goto finally;
}
PyBytes_AsStringAndSize(chunk, &chunkData, &chunkSize);
zresult = ZSTD_getFrameParams(&frameParams, (void*)chunkData, chunkSize);
if (ZSTD_isError(zresult)) {
PyErr_Format(PyExc_ValueError, "chunk %zd is not a valid zstd frame", chunkIndex);
goto finally;
}
else if (zresult) {
PyErr_Format(PyExc_ValueError, "chunk %zd is too small to contain a zstd frame", chunkIndex);
goto finally;
}
if (0 == frameParams.frameContentSize) {
PyErr_Format(PyExc_ValueError, "chunk %zd missing content size in frame", chunkIndex);
goto finally;
}
parity = chunkIndex % 2;
/* This could definitely be abstracted to reduce code duplication. */
if (parity) {
/* Resize destination buffer to hold larger content. */
if (buffer2Size < frameParams.frameContentSize) {
buffer2Size = frameParams.frameContentSize;
destBuffer = PyMem_Realloc(buffer2, buffer2Size);
if (!destBuffer) {
goto finally;
}
buffer2 = destBuffer;
}
Py_BEGIN_ALLOW_THREADS
zresult = ZSTD_decompress_usingDict(dctx, buffer2, buffer2Size,
chunkData, chunkSize, buffer1, buffer1ContentSize);
Py_END_ALLOW_THREADS
if (ZSTD_isError(zresult)) {
PyErr_Format(ZstdError, "could not decompress chunk %zd: %s",
chunkIndex, ZSTD_getErrorName(zresult));
goto finally;
}
buffer2ContentSize = zresult;
}
else {
if (buffer1Size < frameParams.frameContentSize) {
buffer1Size = frameParams.frameContentSize;
destBuffer = PyMem_Realloc(buffer1, buffer1Size);
if (!destBuffer) {
goto finally;
}
buffer1 = destBuffer;
}
Py_BEGIN_ALLOW_THREADS
zresult = ZSTD_decompress_usingDict(dctx, buffer1, buffer1Size,
chunkData, chunkSize, buffer2, buffer2ContentSize);
Py_END_ALLOW_THREADS
if (ZSTD_isError(zresult)) {
PyErr_Format(ZstdError, "could not decompress chunk %zd: %s",
chunkIndex, ZSTD_getErrorName(zresult));
goto finally;
}
buffer1ContentSize = zresult;
}
}
result = PyBytes_FromStringAndSize(parity ? buffer2 : buffer1,
parity ? buffer2ContentSize : buffer1ContentSize);
finally:
if (buffer2) {
PyMem_Free(buffer2);
}
if (buffer1) {
PyMem_Free(buffer1);
}
if (dctx) {
ZSTD_freeDCtx(dctx);
}
return result;
}
static PyMethodDef Decompressor_methods[] = {
{ "copy_stream", (PyCFunction)Decompressor_copy_stream, METH_VARARGS | METH_KEYWORDS,
Decompressor_copy_stream__doc__ },
{ "decompress", (PyCFunction)Decompressor_decompress, METH_VARARGS | METH_KEYWORDS,
Decompressor_decompress__doc__ },
{ "decompressobj", (PyCFunction)Decompressor_decompressobj, METH_NOARGS,
Decompressor_decompressobj__doc__ },
{ "read_from", (PyCFunction)Decompressor_read_from, METH_VARARGS | METH_KEYWORDS,
Decompressor_read_from__doc__ },
{ "write_to", (PyCFunction)Decompressor_write_to, METH_VARARGS | METH_KEYWORDS,
Decompressor_write_to__doc__ },
{ "decompress_content_dict_chain", (PyCFunction)Decompressor_decompress_content_dict_chain,
METH_VARARGS | METH_KEYWORDS, Decompressor_decompress_content_dict_chain__doc__ },
{ NULL, NULL }
};
PyTypeObject ZstdDecompressorType = {
PyVarObject_HEAD_INIT(NULL, 0)
"zstd.ZstdDecompressor", /* tp_name */
sizeof(ZstdDecompressor), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)Decompressor_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
Decompressor__doc__, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Decompressor_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Decompressor_init, /* tp_init */
0, /* tp_alloc */
PyType_GenericNew, /* tp_new */
};
void decompressor_module_init(PyObject* mod) {
Py_TYPE(&ZstdDecompressorType) = &PyType_Type;
if (PyType_Ready(&ZstdDecompressorType) < 0) {
return;
}
Py_INCREF((PyObject*)&ZstdDecompressorType);
PyModule_AddObject(mod, "ZstdDecompressor",
(PyObject*)&ZstdDecompressorType);
}