##// END OF EJS Templates
revlog: stop usage of `_indexfile` to computing nodemap path...
revlog: stop usage of `_indexfile` to computing nodemap path We now have the radix explicitely lets use the radix explicitely Differential Revision: https://phab.mercurial-scm.org/D10577

File last commit:

r44605:5e84a96d default
r47922:24be247a default
Show More
common.py
203 lines | 5.7 KiB | text/x-python | PythonLexer
import imp
import inspect
import io
import os
import types
import unittest
try:
import hypothesis
except ImportError:
hypothesis = None
class TestCase(unittest.TestCase):
if not getattr(unittest.TestCase, "assertRaisesRegex", False):
assertRaisesRegex = unittest.TestCase.assertRaisesRegexp
def make_cffi(cls):
"""Decorator to add CFFI versions of each test method."""
# The module containing this class definition should
# `import zstandard as zstd`. Otherwise things may blow up.
mod = inspect.getmodule(cls)
if not hasattr(mod, "zstd"):
raise Exception('test module does not contain "zstd" symbol')
if not hasattr(mod.zstd, "backend"):
raise Exception(
'zstd symbol does not have "backend" attribute; did '
"you `import zstandard as zstd`?"
)
# If `import zstandard` already chose the cffi backend, there is nothing
# for us to do: we only add the cffi variation if the default backend
# is the C extension.
if mod.zstd.backend == "cffi":
return cls
old_env = dict(os.environ)
os.environ["PYTHON_ZSTANDARD_IMPORT_POLICY"] = "cffi"
try:
try:
mod_info = imp.find_module("zstandard")
mod = imp.load_module("zstandard_cffi", *mod_info)
except ImportError:
return cls
finally:
os.environ.clear()
os.environ.update(old_env)
if mod.backend != "cffi":
raise Exception(
"got the zstandard %s backend instead of cffi" % mod.backend
)
# If CFFI version is available, dynamically construct test methods
# that use it.
for attr in dir(cls):
fn = getattr(cls, attr)
if not inspect.ismethod(fn) and not inspect.isfunction(fn):
continue
if not fn.__name__.startswith("test_"):
continue
name = "%s_cffi" % fn.__name__
# Replace the "zstd" symbol with the CFFI module instance. Then copy
# the function object and install it in a new attribute.
if isinstance(fn, types.FunctionType):
globs = dict(fn.__globals__)
globs["zstd"] = mod
new_fn = types.FunctionType(
fn.__code__, globs, name, fn.__defaults__, fn.__closure__
)
new_method = new_fn
else:
globs = dict(fn.__func__.func_globals)
globs["zstd"] = mod
new_fn = types.FunctionType(
fn.__func__.func_code,
globs,
name,
fn.__func__.func_defaults,
fn.__func__.func_closure,
)
new_method = types.UnboundMethodType(
new_fn, fn.im_self, fn.im_class
)
setattr(cls, name, new_method)
return cls
class NonClosingBytesIO(io.BytesIO):
"""BytesIO that saves the underlying buffer on close().
This allows us to access written data after close().
"""
def __init__(self, *args, **kwargs):
super(NonClosingBytesIO, self).__init__(*args, **kwargs)
self._saved_buffer = None
def close(self):
self._saved_buffer = self.getvalue()
return super(NonClosingBytesIO, self).close()
def getvalue(self):
if self.closed:
return self._saved_buffer
else:
return super(NonClosingBytesIO, self).getvalue()
class OpCountingBytesIO(NonClosingBytesIO):
def __init__(self, *args, **kwargs):
self._flush_count = 0
self._read_count = 0
self._write_count = 0
return super(OpCountingBytesIO, self).__init__(*args, **kwargs)
def flush(self):
self._flush_count += 1
return super(OpCountingBytesIO, self).flush()
def read(self, *args):
self._read_count += 1
return super(OpCountingBytesIO, self).read(*args)
def write(self, data):
self._write_count += 1
return super(OpCountingBytesIO, self).write(data)
_source_files = []
def random_input_data():
"""Obtain the raw content of source files.
This is used for generating "random" data to feed into fuzzing, since it is
faster than random content generation.
"""
if _source_files:
return _source_files
for root, dirs, files in os.walk(os.path.dirname(__file__)):
dirs[:] = list(sorted(dirs))
for f in sorted(files):
try:
with open(os.path.join(root, f), "rb") as fh:
data = fh.read()
if data:
_source_files.append(data)
except OSError:
pass
# Also add some actual random data.
_source_files.append(os.urandom(100))
_source_files.append(os.urandom(1000))
_source_files.append(os.urandom(10000))
_source_files.append(os.urandom(100000))
_source_files.append(os.urandom(1000000))
return _source_files
def generate_samples():
inputs = [
b"foo",
b"bar",
b"abcdef",
b"sometext",
b"baz",
]
samples = []
for i in range(128):
samples.append(inputs[i % 5])
samples.append(inputs[i % 5] * (i + 3))
samples.append(inputs[-(i % 5)] * (i + 2))
return samples
if hypothesis:
default_settings = hypothesis.settings(deadline=10000)
hypothesis.settings.register_profile("default", default_settings)
ci_settings = hypothesis.settings(deadline=20000, max_examples=1000)
hypothesis.settings.register_profile("ci", ci_settings)
expensive_settings = hypothesis.settings(deadline=None, max_examples=10000)
hypothesis.settings.register_profile("expensive", expensive_settings)
hypothesis.settings.load_profile(
os.environ.get("HYPOTHESIS_PROFILE", "default")
)