##// END OF EJS Templates
dockerlib: allow non-unique uid and gid of $DBUILDUSER (issue4657)...
dockerlib: allow non-unique uid and gid of $DBUILDUSER (issue4657) There are make targets for building mercurial packages for various distributions using docker. One of the preparation steps before building is to create inside the docker image a user with the same uid/gid as the current user on the host system, so that the resulting files have appropriate ownership/permissions. It's possible to run `make docker-<distro>` as a user with uid or gid that is already present in a vanilla docker container of that distibution. For example, issue4657 is about failing to build fedora packages as a user with uid=999 and gid=999 because these ids are already used in fedora, and groupadd fails. useradd would fail too, if the flow ever got to it (and there was a user with such uid already). A straightforward (maybe too much) way to fix this is to allow non-unique uid and gid for the new user and group that get created inside the image. I'm not sure of the implications of this, but marmoute encouraged me to try and send this patch for stable.

File last commit:

r23494:3849b894 default
r26888:271a8020 stable
Show More
generate-working-copy-states.py
86 lines | 3.2 KiB | text/x-python | PythonLexer
/ tests / generate-working-copy-states.py
# Helper script used for generating history and working copy files and content.
# The file's name corresponds to its history. The number of changesets can
# be specified on the command line. With 2 changesets, files with names like
# content1_content2_content1-untracked are generated. The first two filename
# segments describe the contents in the two changesets. The third segment
# ("content1-untracked") describes the state in the working copy, i.e.
# the file has content "content1" and is untracked (since it was previously
# tracked, it has been forgotten).
#
# This script generates the filenames and their content, but it's up to the
# caller to tell hg about the state.
#
# There are two subcommands:
# filelist <numchangesets>
# state <numchangesets> (<changeset>|wc)
#
# Typical usage:
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'first'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'second'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 wc
# $ hg addremove --similarity 0
# $ hg forget *_*_*-untracked
# $ rm *_*_missing-*
import sys
import os
# Generates pairs of (filename, contents), where 'contents' is a list
# describing the file's content at each revision (or in the working copy).
# At each revision, it is either None or the file's actual content. When not
# None, it may be either new content or the same content as an earlier
# revisions, so all of (modified,clean,added,removed) can be tested.
def generatestates(maxchangesets, parentcontents):
depth = len(parentcontents)
if depth == maxchangesets + 1:
for tracked in ('untracked', 'tracked'):
filename = "_".join([(content is None and 'missing' or content) for
content in parentcontents]) + "-" + tracked
yield (filename, parentcontents)
else:
for content in (set([None, 'content' + str(depth + 1)]) |
set(parentcontents)):
for combination in generatestates(maxchangesets,
parentcontents + [content]):
yield combination
# retrieve the command line arguments
target = sys.argv[1]
maxchangesets = int(sys.argv[2])
if target == 'state':
depth = sys.argv[3]
# sort to make sure we have stable output
combinations = sorted(generatestates(maxchangesets, []))
# compute file content
content = []
for filename, states in combinations:
if target == 'filelist':
print filename
elif target == 'state':
if depth == 'wc':
# Make sure there is content so the file gets written and can be
# tracked. It will be deleted outside of this script.
content.append((filename, states[maxchangesets] or 'TOBEDELETED'))
else:
content.append((filename, states[int(depth) - 1]))
else:
print >> sys.stderr, "unknown target:", target
sys.exit(1)
# write actual content
for filename, data in content:
if data is not None:
f = open(filename, 'wb')
f.write(data + '\n')
f.close()
elif os.path.exists(filename):
os.remove(filename)