##// END OF EJS Templates
packaging: add support for PyOxidizer...
packaging: add support for PyOxidizer I've successfully built Mercurial on the development tip of PyOxidizer on Linux and Windows. It mostly "just works" on Linux. Windows is a bit more finicky. In-memory resource files are probably not all working correctly due to bugs in PyOxidizer's naming of modules. PyOxidizer now now supports installing files next to the produced binary. (We do this for templates in the added file.) So a workaround should be available. Also, since the last time I submitted support for PyOxidizer, PyOxidizer gained the ability to auto-generate Rust projects to build executables. So we don't need to worry about vendoring any Rust code to initially support PyOxidizer. However, at some point we will likely want to write our own command line driver that embeds a Python interpreter via PyOxidizer so we can run Rust code outside the confines of a Python interpreter. But that will be a follow-up. I would also like to add packaging.py CLI commands to build PyOxidizer distributions. This can come later, if ever. PyOxidizer's new "targets" feature makes it really easy to define packaging tasks in its Starlark configuration file. While not much is implemented yet, eventually we should be able to produce MSIs, etc using a `pyoxidizer build` one-liner. We'll get there... Differential Revision: https://phab.mercurial-scm.org/D7450
Gregory Szorc -
r44697:281b6690 default
Show More
Name Size Modified Last Commit Author
/ contrib / packaging / inno
mercurial.iss Loading ...
modpath.iss Loading ...
readme.rst Loading ...
requirements.txt Loading ...
requirements.txt.in Loading ...

Requirements

Building the Inno installer requires a Windows machine.

The following system dependencies must be installed:

Building

The packaging.py script automates the process of producing an Inno installer. It manages fetching and configuring the non-system dependencies (such as py2exe, gettext, and various Python packages).

The script requires an activated Visual C++ 2008 command prompt. A shortcut to such a prompt was installed with Microsoft Visual C++ Compiler for Python 2.7. From your Start Menu, look for Microsoft Visual C++ Compiler Package for Python 2.7 then launch either Visual C++ 2008 32-bit Command Prompt or Visual C++ 2008 64-bit Command Prompt.

From the prompt, change to the Mercurial source directory. e.g. cd c:\src\hg.

Next, invoke packaging.py to produce an Inno installer. You will need to supply the path to the Python interpreter to use.:

$ python3.exe contrib\packaging\packaging.py \
    inno --python c:\python27\python.exe

Note

The script validates that the Visual C++ environment is active and that the architecture of the specified Python interpreter matches the Visual C++ environment and errors if not.

If everything runs as intended, dependencies will be fetched and configured into the build sub-directory, Mercurial will be built, and an installer placed in the dist sub-directory. The final line of output should print the name of the generated installer.

Additional options may be configured. Run packaging.py inno --help to see a list of program flags.

MinGW

It is theoretically possible to generate an installer that uses MinGW. This isn't well tested and packaging.py and may properly support it. See old versions of this file in version control for potentially useful hints as to how to achieve this.