##// END OF EJS Templates
packaging: add support for PyOxidizer...
packaging: add support for PyOxidizer I've successfully built Mercurial on the development tip of PyOxidizer on Linux and Windows. It mostly "just works" on Linux. Windows is a bit more finicky. In-memory resource files are probably not all working correctly due to bugs in PyOxidizer's naming of modules. PyOxidizer now now supports installing files next to the produced binary. (We do this for templates in the added file.) So a workaround should be available. Also, since the last time I submitted support for PyOxidizer, PyOxidizer gained the ability to auto-generate Rust projects to build executables. So we don't need to worry about vendoring any Rust code to initially support PyOxidizer. However, at some point we will likely want to write our own command line driver that embeds a Python interpreter via PyOxidizer so we can run Rust code outside the confines of a Python interpreter. But that will be a follow-up. I would also like to add packaging.py CLI commands to build PyOxidizer distributions. This can come later, if ever. PyOxidizer's new "targets" feature makes it really easy to define packaging tasks in its Starlark configuration file. While not much is implemented yet, eventually we should be able to produce MSIs, etc using a `pyoxidizer build` one-liner. We'll get there... Differential Revision: https://phab.mercurial-scm.org/D7450

File last commit:

r44446:de783805 default
r44697:281b6690 default
Show More
zstd_compress_literals.c
154 lines | 5.7 KiB | text/x-c | CLexer
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_literals.h"
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE* const)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall);
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
memcpy(ostart + flSize, src, srcSize);
return srcSize + flSize;
}
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE* const)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
(void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
ostart[flSize] = *(const BYTE*)src;
return flSize+1;
}
size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
ZSTD_hufCTables_t* nextHuf,
ZSTD_strategy strategy, int disableLiteralCompression,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize,
const int bmi2)
{
size_t const minGain = ZSTD_minGain(srcSize, strategy);
size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
BYTE* const ostart = (BYTE*)dst;
U32 singleStream = srcSize < 256;
symbolEncodingType_e hType = set_compressed;
size_t cLitSize;
DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i)",
disableLiteralCompression);
/* Prepare nextEntropy assuming reusing the existing table */
memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
if (disableLiteralCompression)
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
/* small ? don't even attempt compression (speed opt) */
# define COMPRESS_LITERALS_SIZE_MIN 63
{ size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN;
if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression");
{ HUF_repeat repeat = prevHuf->repeatMode;
int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
cLitSize = singleStream ?
HUF_compress1X_repeat(
ostart+lhSize, dstCapacity-lhSize, src, srcSize,
255, 11, entropyWorkspace, entropyWorkspaceSize,
(HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2) :
HUF_compress4X_repeat(
ostart+lhSize, dstCapacity-lhSize, src, srcSize,
255, 11, entropyWorkspace, entropyWorkspaceSize,
(HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2);
if (repeat != HUF_repeat_none) {
/* reused the existing table */
hType = set_repeat;
}
}
if ((cLitSize==0) | (cLitSize >= srcSize - minGain) | ERR_isError(cLitSize)) {
memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
if (cLitSize==1) {
memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
}
if (hType == set_compressed) {
/* using a newly constructed table */
nextHuf->repeatMode = HUF_repeat_check;
}
/* Build header */
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
{ U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
{ U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
MEM_writeLE32(ostart, lhc);
break;
}
case 5: /* 2 - 2 - 18 - 18 */
{ U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
MEM_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
default: /* not possible : lhSize is {3,4,5} */
assert(0);
}
return lhSize+cLitSize;
}