##// END OF EJS Templates
packaging: add support for PyOxidizer...
packaging: add support for PyOxidizer I've successfully built Mercurial on the development tip of PyOxidizer on Linux and Windows. It mostly "just works" on Linux. Windows is a bit more finicky. In-memory resource files are probably not all working correctly due to bugs in PyOxidizer's naming of modules. PyOxidizer now now supports installing files next to the produced binary. (We do this for templates in the added file.) So a workaround should be available. Also, since the last time I submitted support for PyOxidizer, PyOxidizer gained the ability to auto-generate Rust projects to build executables. So we don't need to worry about vendoring any Rust code to initially support PyOxidizer. However, at some point we will likely want to write our own command line driver that embeds a Python interpreter via PyOxidizer so we can run Rust code outside the confines of a Python interpreter. But that will be a follow-up. I would also like to add packaging.py CLI commands to build PyOxidizer distributions. This can come later, if ever. PyOxidizer's new "targets" feature makes it really easy to define packaging tasks in its Starlark configuration file. While not much is implemented yet, eventually we should be able to produce MSIs, etc using a `pyoxidizer build` one-liner. We'll get there... Differential Revision: https://phab.mercurial-scm.org/D7450

File last commit:

r44446:de783805 default
r44697:281b6690 default
Show More
zstd_compress_sequences.h
47 lines | 1.9 KiB | text/x-c | CLexer
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_SEQUENCES_H
#define ZSTD_COMPRESS_SEQUENCES_H
#include "fse.h" /* FSE_repeat, FSE_CTable */
#include "zstd_internal.h" /* symbolEncodingType_e, ZSTD_strategy */
typedef enum {
ZSTD_defaultDisallowed = 0,
ZSTD_defaultAllowed = 1
} ZSTD_defaultPolicy_e;
symbolEncodingType_e
ZSTD_selectEncodingType(
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
FSE_CTable const* prevCTable,
short const* defaultNorm, U32 defaultNormLog,
ZSTD_defaultPolicy_e const isDefaultAllowed,
ZSTD_strategy const strategy);
size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
unsigned* count, U32 max,
const BYTE* codeTable, size_t nbSeq,
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
const FSE_CTable* prevCTable, size_t prevCTableSize,
void* entropyWorkspace, size_t entropyWorkspaceSize);
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2);
#endif /* ZSTD_COMPRESS_SEQUENCES_H */