##// END OF EJS Templates
templatefuncs: add mailmap template function...
templatefuncs: add mailmap template function This commit adds a template function to support the .mailmap file in Mercurial repositories. The .mailmap file comes from git, and can be used to map new emails and names for old commits. The general use case is that someone may change their name or author commits under different emails and aliases, which would make these commits appear as though they came from different persons. The file allows you to specify the correct name that should be used in place of the author field specified in the commit. The mailmap file has 4 possible formats used to map old "commit" names to new "proper" names: 1. <proper@email.com> <commit@email.com> 2. Proper Name <commit@email.com> 3. Proper Name <proper@email.com> <commit@email.com> 4. Proper Name <proper@email.com> Commit Name <commit@email.com> Essentially there is a commit email present in each mailmap entry, that maps to either an updated name, email, or both. The final possible format allows commits authored by a person who used both an old name and an old email to map to a new name and email. To parse the file, we split by spaces and build a name out of every element that does not start with "<". Once we find an element that does start with "<" we concatenate all the name elements that preceded and add that as a parsed name. We then add the email as the first parsed email. We repeat the process until the end of the line, or a comment is found. We will be left with all parsed names in a list, and all parsed emails in a list, with the 0 index being the proper values and the 1 index being the commit values (if they were specified in the entry). The commit values are added as the keys to a dict, and with the proper fields as the values. The mapname function takes the mapping object and the commit author field and attempts to look for a corresponding entry. To do so we try (commit name, commit email) first, and if no results are returned then (None, commit email) is also looked up. This is due to format 4 from above, where someone may have a mailmap entry with both name and email, and if they don't it is possible they have an entry that uses only the commit email. Differential Revision: https://phab.mercurial-scm.org/D2904

File last commit:

r32200:4462a981 default
r37227:2a2ce93e default
Show More
pvec.py
214 lines | 5.9 KiB | text/x-python | PythonLexer
# pvec.py - probabilistic vector clocks for Mercurial
#
# Copyright 2012 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
'''
A "pvec" is a changeset property based on the theory of vector clocks
that can be compared to discover relatedness without consulting a
graph. This can be useful for tasks like determining how a
disconnected patch relates to a repository.
Currently a pvec consist of 448 bits, of which 24 are 'depth' and the
remainder are a bit vector. It is represented as a 70-character base85
string.
Construction:
- a root changeset has a depth of 0 and a bit vector based on its hash
- a normal commit has a changeset where depth is increased by one and
one bit vector bit is flipped based on its hash
- a merge changeset pvec is constructed by copying changes from one pvec into
the other to balance its depth
Properties:
- for linear changes, difference in depth is always <= hamming distance
- otherwise, changes are probably divergent
- when hamming distance is < 200, we can reliably detect when pvecs are near
Issues:
- hamming distance ceases to work over distances of ~ 200
- detecting divergence is less accurate when the common ancestor is very close
to either revision or total distance is high
- this could probably be improved by modeling the relation between
delta and hdist
Uses:
- a patch pvec can be used to locate the nearest available common ancestor for
resolving conflicts
- ordering of patches can be established without a DAG
- two head pvecs can be compared to determine whether push/pull/merge is needed
and approximately how many changesets are involved
- can be used to find a heuristic divergence measure between changesets on
different branches
'''
from __future__ import absolute_import
from .node import nullrev
from . import (
util,
)
_size = 448 # 70 chars b85-encoded
_bytes = _size / 8
_depthbits = 24
_depthbytes = _depthbits / 8
_vecbytes = _bytes - _depthbytes
_vecbits = _vecbytes * 8
_radius = (_vecbits - 30) / 2 # high probability vectors are related
def _bin(bs):
'''convert a bytestring to a long'''
v = 0
for b in bs:
v = v * 256 + ord(b)
return v
def _str(v, l):
bs = ""
for p in xrange(l):
bs = chr(v & 255) + bs
v >>= 8
return bs
def _split(b):
'''depth and bitvec'''
return _bin(b[:_depthbytes]), _bin(b[_depthbytes:])
def _join(depth, bitvec):
return _str(depth, _depthbytes) + _str(bitvec, _vecbytes)
def _hweight(x):
c = 0
while x:
if x & 1:
c += 1
x >>= 1
return c
_htab = [_hweight(x) for x in xrange(256)]
def _hamming(a, b):
'''find the hamming distance between two longs'''
d = a ^ b
c = 0
while d:
c += _htab[d & 0xff]
d >>= 8
return c
def _mergevec(x, y, c):
# Ideally, this function would be x ^ y ^ ancestor, but finding
# ancestors is a nuisance. So instead we find the minimal number
# of changes to balance the depth and hamming distance
d1, v1 = x
d2, v2 = y
if d1 < d2:
d1, d2, v1, v2 = d2, d1, v2, v1
hdist = _hamming(v1, v2)
ddist = d1 - d2
v = v1
m = v1 ^ v2 # mask of different bits
i = 1
if hdist > ddist:
# if delta = 10 and hdist = 100, then we need to go up 55 steps
# to the ancestor and down 45
changes = (hdist - ddist + 1) / 2
else:
# must make at least one change
changes = 1
depth = d1 + changes
# copy changes from v2
if m:
while changes:
if m & i:
v ^= i
changes -= 1
i <<= 1
else:
v = _flipbit(v, c)
return depth, v
def _flipbit(v, node):
# converting bit strings to longs is slow
bit = (hash(node) & 0xffffffff) % _vecbits
return v ^ (1<<bit)
def ctxpvec(ctx):
'''construct a pvec for ctx while filling in the cache'''
r = ctx.repo()
if not util.safehasattr(r, "_pveccache"):
r._pveccache = {}
pvc = r._pveccache
if ctx.rev() not in pvc:
cl = r.changelog
for n in xrange(ctx.rev() + 1):
if n not in pvc:
node = cl.node(n)
p1, p2 = cl.parentrevs(n)
if p1 == nullrev:
# start with a 'random' vector at root
pvc[n] = (0, _bin((node * 3)[:_vecbytes]))
elif p2 == nullrev:
d, v = pvc[p1]
pvc[n] = (d + 1, _flipbit(v, node))
else:
pvc[n] = _mergevec(pvc[p1], pvc[p2], node)
bs = _join(*pvc[ctx.rev()])
return pvec(util.b85encode(bs))
class pvec(object):
def __init__(self, hashorctx):
if isinstance(hashorctx, str):
self._bs = hashorctx
self._depth, self._vec = _split(util.b85decode(hashorctx))
else:
self._vec = ctxpvec(hashorctx)
def __str__(self):
return self._bs
def __eq__(self, b):
return self._vec == b._vec and self._depth == b._depth
def __lt__(self, b):
delta = b._depth - self._depth
if delta < 0:
return False # always correct
if _hamming(self._vec, b._vec) > delta:
return False
return True
def __gt__(self, b):
return b < self
def __or__(self, b):
delta = abs(b._depth - self._depth)
if _hamming(self._vec, b._vec) <= delta:
return False
return True
def __sub__(self, b):
if self | b:
raise ValueError("concurrent pvecs")
return self._depth - b._depth
def distance(self, b):
d = abs(b._depth - self._depth)
h = _hamming(self._vec, b._vec)
return max(d, h)
def near(self, b):
dist = abs(b.depth - self._depth)
if dist > _radius or _hamming(self._vec, b._vec) > _radius:
return False