|
|
// ancestors.rs
|
|
|
//
|
|
|
// Copyright 2018 Georges Racinet <gracinet@anybox.fr>
|
|
|
//
|
|
|
// This software may be used and distributed according to the terms of the
|
|
|
// GNU General Public License version 2 or any later version.
|
|
|
|
|
|
//! Rust versions of generic DAG ancestors algorithms for Mercurial
|
|
|
|
|
|
use super::{Graph, GraphError, Revision, NULL_REVISION};
|
|
|
use std::cmp::max;
|
|
|
use std::collections::{BinaryHeap, HashSet};
|
|
|
use crate::dagops;
|
|
|
|
|
|
/// Iterator over the ancestors of a given list of revisions
|
|
|
/// This is a generic type, defined and implemented for any Graph, so that
|
|
|
/// it's easy to
|
|
|
///
|
|
|
/// - unit test in pure Rust
|
|
|
/// - bind to main Mercurial code, potentially in several ways and have these
|
|
|
/// bindings evolve over time
|
|
|
pub struct AncestorsIterator<G: Graph> {
|
|
|
graph: G,
|
|
|
visit: BinaryHeap<Revision>,
|
|
|
seen: HashSet<Revision>,
|
|
|
stoprev: Revision,
|
|
|
}
|
|
|
|
|
|
/// Lazy ancestors set, backed by AncestorsIterator
|
|
|
pub struct LazyAncestors<G: Graph + Clone> {
|
|
|
graph: G,
|
|
|
containsiter: AncestorsIterator<G>,
|
|
|
initrevs: Vec<Revision>,
|
|
|
stoprev: Revision,
|
|
|
inclusive: bool,
|
|
|
}
|
|
|
|
|
|
pub struct MissingAncestors<G: Graph> {
|
|
|
graph: G,
|
|
|
bases: HashSet<Revision>,
|
|
|
}
|
|
|
|
|
|
impl<G: Graph> AncestorsIterator<G> {
|
|
|
/// Constructor.
|
|
|
///
|
|
|
/// if `inclusive` is true, then the init revisions are emitted in
|
|
|
/// particular, otherwise iteration starts from their parents.
|
|
|
pub fn new(
|
|
|
graph: G,
|
|
|
initrevs: impl IntoIterator<Item = Revision>,
|
|
|
stoprev: Revision,
|
|
|
inclusive: bool,
|
|
|
) -> Result<Self, GraphError> {
|
|
|
let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev);
|
|
|
if inclusive {
|
|
|
let visit: BinaryHeap<Revision> = filtered_initrevs.collect();
|
|
|
let seen = visit.iter().map(|&x| x).collect();
|
|
|
return Ok(AncestorsIterator {
|
|
|
visit: visit,
|
|
|
seen: seen,
|
|
|
stoprev: stoprev,
|
|
|
graph: graph,
|
|
|
});
|
|
|
}
|
|
|
let mut this = AncestorsIterator {
|
|
|
visit: BinaryHeap::new(),
|
|
|
seen: HashSet::new(),
|
|
|
stoprev: stoprev,
|
|
|
graph: graph,
|
|
|
};
|
|
|
this.seen.insert(NULL_REVISION);
|
|
|
for rev in filtered_initrevs {
|
|
|
for parent in this.graph.parents(rev)?.iter().cloned() {
|
|
|
this.conditionally_push_rev(parent);
|
|
|
}
|
|
|
}
|
|
|
Ok(this)
|
|
|
}
|
|
|
|
|
|
#[inline]
|
|
|
fn conditionally_push_rev(&mut self, rev: Revision) {
|
|
|
if self.stoprev <= rev && !self.seen.contains(&rev) {
|
|
|
self.seen.insert(rev);
|
|
|
self.visit.push(rev);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Consumes partially the iterator to tell if the given target
|
|
|
/// revision
|
|
|
/// is in the ancestors it emits.
|
|
|
/// This is meant for iterators actually dedicated to that kind of
|
|
|
/// purpose
|
|
|
pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> {
|
|
|
if self.seen.contains(&target) && target != NULL_REVISION {
|
|
|
return Ok(true);
|
|
|
}
|
|
|
for item in self {
|
|
|
let rev = item?;
|
|
|
if rev == target {
|
|
|
return Ok(true);
|
|
|
}
|
|
|
if rev < target {
|
|
|
return Ok(false);
|
|
|
}
|
|
|
}
|
|
|
Ok(false)
|
|
|
}
|
|
|
|
|
|
pub fn peek(&self) -> Option<Revision> {
|
|
|
self.visit.peek().map(|&r| r)
|
|
|
}
|
|
|
|
|
|
/// Tell if the iterator is about an empty set
|
|
|
///
|
|
|
/// The result does not depend whether the iterator has been consumed
|
|
|
/// or not.
|
|
|
/// This is mostly meant for iterators backing a lazy ancestors set
|
|
|
pub fn is_empty(&self) -> bool {
|
|
|
if self.visit.len() > 0 {
|
|
|
return false;
|
|
|
}
|
|
|
if self.seen.len() > 1 {
|
|
|
return false;
|
|
|
}
|
|
|
// at this point, the seen set is at most a singleton.
|
|
|
// If not `self.inclusive`, it's still possible that it has only
|
|
|
// the null revision
|
|
|
self.seen.is_empty() || self.seen.contains(&NULL_REVISION)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Main implementation for the iterator
|
|
|
///
|
|
|
/// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py`
|
|
|
/// with a few non crucial differences:
|
|
|
///
|
|
|
/// - there's no filtering of invalid parent revisions. Actually, it should be
|
|
|
/// consistent and more efficient to filter them from the end caller.
|
|
|
/// - we don't have the optimization for adjacent revisions (i.e., the case
|
|
|
/// where `p1 == rev - 1`), because it amounts to update the first element of
|
|
|
/// the heap without sifting, which Rust's BinaryHeap doesn't let us do.
|
|
|
/// - we save a few pushes by comparing with `stoprev` before pushing
|
|
|
impl<G: Graph> Iterator for AncestorsIterator<G> {
|
|
|
type Item = Result<Revision, GraphError>;
|
|
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
|
let current = match self.visit.peek() {
|
|
|
None => {
|
|
|
return None;
|
|
|
}
|
|
|
Some(c) => *c,
|
|
|
};
|
|
|
let [p1, p2] = match self.graph.parents(current) {
|
|
|
Ok(ps) => ps,
|
|
|
Err(e) => return Some(Err(e)),
|
|
|
};
|
|
|
if p1 < self.stoprev || self.seen.contains(&p1) {
|
|
|
self.visit.pop();
|
|
|
} else {
|
|
|
*(self.visit.peek_mut().unwrap()) = p1;
|
|
|
self.seen.insert(p1);
|
|
|
};
|
|
|
|
|
|
self.conditionally_push_rev(p2);
|
|
|
Some(Ok(current))
|
|
|
}
|
|
|
}
|
|
|
|
|
|
impl<G: Graph + Clone> LazyAncestors<G> {
|
|
|
pub fn new(
|
|
|
graph: G,
|
|
|
initrevs: impl IntoIterator<Item = Revision>,
|
|
|
stoprev: Revision,
|
|
|
inclusive: bool,
|
|
|
) -> Result<Self, GraphError> {
|
|
|
let v: Vec<Revision> = initrevs.into_iter().collect();
|
|
|
Ok(LazyAncestors {
|
|
|
graph: graph.clone(),
|
|
|
containsiter: AncestorsIterator::new(
|
|
|
graph,
|
|
|
v.iter().cloned(),
|
|
|
stoprev,
|
|
|
inclusive,
|
|
|
)?,
|
|
|
initrevs: v,
|
|
|
stoprev: stoprev,
|
|
|
inclusive: inclusive,
|
|
|
})
|
|
|
}
|
|
|
|
|
|
pub fn contains(&mut self, rev: Revision) -> Result<bool, GraphError> {
|
|
|
self.containsiter.contains(rev)
|
|
|
}
|
|
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
|
self.containsiter.is_empty()
|
|
|
}
|
|
|
|
|
|
pub fn iter(&self) -> AncestorsIterator<G> {
|
|
|
// the arguments being the same as for self.containsiter, we know
|
|
|
// for sure that AncestorsIterator constructor can't fail
|
|
|
AncestorsIterator::new(
|
|
|
self.graph.clone(),
|
|
|
self.initrevs.iter().cloned(),
|
|
|
self.stoprev,
|
|
|
self.inclusive,
|
|
|
)
|
|
|
.unwrap()
|
|
|
}
|
|
|
}
|
|
|
|
|
|
impl<G: Graph> MissingAncestors<G> {
|
|
|
pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self {
|
|
|
let mut bases: HashSet<Revision> = bases.into_iter().collect();
|
|
|
if bases.is_empty() {
|
|
|
bases.insert(NULL_REVISION);
|
|
|
}
|
|
|
MissingAncestors { graph, bases }
|
|
|
}
|
|
|
|
|
|
pub fn has_bases(&self) -> bool {
|
|
|
self.bases.iter().any(|&b| b != NULL_REVISION)
|
|
|
}
|
|
|
|
|
|
/// Return a reference to current bases.
|
|
|
///
|
|
|
/// This is useful in unit tests, but also setdiscovery.py does
|
|
|
/// read the bases attribute of a ancestor.missingancestors instance.
|
|
|
pub fn get_bases<'a>(&'a self) -> &'a HashSet<Revision> {
|
|
|
&self.bases
|
|
|
}
|
|
|
|
|
|
/// Computes the relative heads of current bases.
|
|
|
///
|
|
|
/// The object is still usable after this.
|
|
|
pub fn bases_heads(&self) -> Result<HashSet<Revision>, GraphError> {
|
|
|
dagops::heads(&self.graph, self.bases.iter())
|
|
|
}
|
|
|
|
|
|
/// Consumes the object and returns the relative heads of its bases.
|
|
|
pub fn into_bases_heads(mut self) -> Result<HashSet<Revision>, GraphError> {
|
|
|
dagops::retain_heads(&self.graph, &mut self.bases)?;
|
|
|
Ok(self.bases)
|
|
|
}
|
|
|
|
|
|
pub fn add_bases(
|
|
|
&mut self,
|
|
|
new_bases: impl IntoIterator<Item = Revision>,
|
|
|
) {
|
|
|
self.bases.extend(new_bases);
|
|
|
}
|
|
|
|
|
|
/// Remove all ancestors of self.bases from the revs set (in place)
|
|
|
pub fn remove_ancestors_from(
|
|
|
&mut self,
|
|
|
revs: &mut HashSet<Revision>,
|
|
|
) -> Result<(), GraphError> {
|
|
|
revs.retain(|r| !self.bases.contains(r));
|
|
|
// the null revision is always an ancestor
|
|
|
revs.remove(&NULL_REVISION);
|
|
|
if revs.is_empty() {
|
|
|
return Ok(());
|
|
|
}
|
|
|
// anything in revs > start is definitely not an ancestor of bases
|
|
|
// revs <= start need to be investigated
|
|
|
// TODO optim: if a missingancestors is to be used several times,
|
|
|
// we shouldn't need to iterate each time on bases
|
|
|
let start = match self.bases.iter().cloned().max() {
|
|
|
Some(m) => m,
|
|
|
None => {
|
|
|
// bases is empty (shouldn't happen, but let's be safe)
|
|
|
return Ok(());
|
|
|
}
|
|
|
};
|
|
|
// whatever happens, we'll keep at least keepcount of them
|
|
|
// knowing this gives us a earlier stop condition than
|
|
|
// going all the way to the root
|
|
|
let keepcount = revs.iter().filter(|r| **r > start).count();
|
|
|
|
|
|
let mut curr = start;
|
|
|
while curr != NULL_REVISION && revs.len() > keepcount {
|
|
|
if self.bases.contains(&curr) {
|
|
|
revs.remove(&curr);
|
|
|
self.add_parents(curr)?;
|
|
|
}
|
|
|
curr -= 1;
|
|
|
}
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
/// Add rev's parents to self.bases
|
|
|
#[inline]
|
|
|
fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> {
|
|
|
// No need to bother the set with inserting NULL_REVISION over and
|
|
|
// over
|
|
|
for p in self.graph.parents(rev)?.iter().cloned() {
|
|
|
if p != NULL_REVISION {
|
|
|
self.bases.insert(p);
|
|
|
}
|
|
|
}
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
/// Return all the ancestors of revs that are not ancestors of self.bases
|
|
|
///
|
|
|
/// This may include elements from revs.
|
|
|
///
|
|
|
/// Equivalent to the revset (::revs - ::self.bases). Revs are returned in
|
|
|
/// revision number order, which is a topological order.
|
|
|
pub fn missing_ancestors(
|
|
|
&mut self,
|
|
|
revs: impl IntoIterator<Item = Revision>,
|
|
|
) -> Result<Vec<Revision>, GraphError> {
|
|
|
// just for convenience and comparison with Python version
|
|
|
let bases_visit = &mut self.bases;
|
|
|
let mut revs: HashSet<Revision> = revs
|
|
|
.into_iter()
|
|
|
.filter(|r| !bases_visit.contains(r))
|
|
|
.collect();
|
|
|
let revs_visit = &mut revs;
|
|
|
let mut both_visit: HashSet<Revision> =
|
|
|
revs_visit.intersection(&bases_visit).cloned().collect();
|
|
|
if revs_visit.is_empty() {
|
|
|
return Ok(Vec::new());
|
|
|
}
|
|
|
|
|
|
let max_bases =
|
|
|
bases_visit.iter().cloned().max().unwrap_or(NULL_REVISION);
|
|
|
let max_revs =
|
|
|
revs_visit.iter().cloned().max().unwrap_or(NULL_REVISION);
|
|
|
let start = max(max_bases, max_revs);
|
|
|
|
|
|
// TODO heuristics for with_capacity()?
|
|
|
let mut missing: Vec<Revision> = Vec::new();
|
|
|
for curr in (0..=start).rev() {
|
|
|
if revs_visit.is_empty() {
|
|
|
break;
|
|
|
}
|
|
|
if both_visit.contains(&curr) {
|
|
|
// curr's parents might have made it into revs_visit through
|
|
|
// another path
|
|
|
// TODO optim: Rust's HashSet.remove returns a boolean telling
|
|
|
// if it happened. This will spare us one set lookup
|
|
|
both_visit.remove(&curr);
|
|
|
for p in self.graph.parents(curr)?.iter().cloned() {
|
|
|
if p == NULL_REVISION {
|
|
|
continue;
|
|
|
}
|
|
|
revs_visit.remove(&p);
|
|
|
bases_visit.insert(p);
|
|
|
both_visit.insert(p);
|
|
|
}
|
|
|
} else if revs_visit.remove(&curr) {
|
|
|
missing.push(curr);
|
|
|
for p in self.graph.parents(curr)?.iter().cloned() {
|
|
|
if p == NULL_REVISION {
|
|
|
continue;
|
|
|
}
|
|
|
if bases_visit.contains(&p) || both_visit.contains(&p) {
|
|
|
// p is an ancestor of revs_visit, and is implicitly
|
|
|
// in bases_visit, which means p is ::revs & ::bases.
|
|
|
// TODO optim: hence if bothvisit, we look up twice
|
|
|
revs_visit.remove(&p);
|
|
|
bases_visit.insert(p);
|
|
|
both_visit.insert(p);
|
|
|
} else {
|
|
|
// visit later
|
|
|
revs_visit.insert(p);
|
|
|
}
|
|
|
}
|
|
|
} else if bases_visit.contains(&curr) {
|
|
|
for p in self.graph.parents(curr)?.iter().cloned() {
|
|
|
if p == NULL_REVISION {
|
|
|
continue;
|
|
|
}
|
|
|
if revs_visit.contains(&p) || both_visit.contains(&p) {
|
|
|
// p is an ancestor of bases_visit, and is implicitly
|
|
|
// in revs_visit, which means p is ::revs & ::bases.
|
|
|
// TODO optim: hence if bothvisit, we look up twice
|
|
|
revs_visit.remove(&p);
|
|
|
bases_visit.insert(p);
|
|
|
both_visit.insert(p);
|
|
|
} else {
|
|
|
bases_visit.insert(p);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
missing.reverse();
|
|
|
Ok(missing)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
|
mod tests {
|
|
|
|
|
|
use super::*;
|
|
|
use crate::testing::{SampleGraph, VecGraph};
|
|
|
use std::iter::FromIterator;
|
|
|
|
|
|
fn list_ancestors<G: Graph>(
|
|
|
graph: G,
|
|
|
initrevs: Vec<Revision>,
|
|
|
stoprev: Revision,
|
|
|
inclusive: bool,
|
|
|
) -> Vec<Revision> {
|
|
|
AncestorsIterator::new(graph, initrevs, stoprev, inclusive)
|
|
|
.unwrap()
|
|
|
.map(|res| res.unwrap())
|
|
|
.collect()
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
/// Same tests as test-ancestor.py, without membership
|
|
|
/// (see also test-ancestor.py.out)
|
|
|
fn test_list_ancestor() {
|
|
|
assert_eq!(list_ancestors(SampleGraph, vec![], 0, false), vec![]);
|
|
|
assert_eq!(
|
|
|
list_ancestors(SampleGraph, vec![11, 13], 0, false),
|
|
|
vec![8, 7, 4, 3, 2, 1, 0]
|
|
|
);
|
|
|
assert_eq!(
|
|
|
list_ancestors(SampleGraph, vec![1, 3], 0, false),
|
|
|
vec![1, 0]
|
|
|
);
|
|
|
assert_eq!(
|
|
|
list_ancestors(SampleGraph, vec![11, 13], 0, true),
|
|
|
vec![13, 11, 8, 7, 4, 3, 2, 1, 0]
|
|
|
);
|
|
|
assert_eq!(
|
|
|
list_ancestors(SampleGraph, vec![11, 13], 6, false),
|
|
|
vec![8, 7]
|
|
|
);
|
|
|
assert_eq!(
|
|
|
list_ancestors(SampleGraph, vec![11, 13], 6, true),
|
|
|
vec![13, 11, 8, 7]
|
|
|
);
|
|
|
assert_eq!(
|
|
|
list_ancestors(SampleGraph, vec![11, 13], 11, true),
|
|
|
vec![13, 11]
|
|
|
);
|
|
|
assert_eq!(
|
|
|
list_ancestors(SampleGraph, vec![11, 13], 12, true),
|
|
|
vec![13]
|
|
|
);
|
|
|
assert_eq!(
|
|
|
list_ancestors(SampleGraph, vec![10, 1], 0, true),
|
|
|
vec![10, 5, 4, 2, 1, 0]
|
|
|
);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
/// Corner case that's not directly in test-ancestors.py, but
|
|
|
/// that happens quite often, as demonstrated by running the whole
|
|
|
/// suite.
|
|
|
/// For instance, run tests/test-obsolete-checkheads.t
|
|
|
fn test_nullrev_input() {
|
|
|
let mut iter =
|
|
|
AncestorsIterator::new(SampleGraph, vec![-1], 0, false).unwrap();
|
|
|
assert_eq!(iter.next(), None)
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_contains() {
|
|
|
let mut lazy =
|
|
|
AncestorsIterator::new(SampleGraph, vec![10, 1], 0, true).unwrap();
|
|
|
assert!(lazy.contains(1).unwrap());
|
|
|
assert!(!lazy.contains(3).unwrap());
|
|
|
|
|
|
let mut lazy =
|
|
|
AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap();
|
|
|
assert!(!lazy.contains(NULL_REVISION).unwrap());
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_peek() {
|
|
|
let mut iter =
|
|
|
AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap();
|
|
|
// peek() gives us the next value
|
|
|
assert_eq!(iter.peek(), Some(10));
|
|
|
// but it's not been consumed
|
|
|
assert_eq!(iter.next(), Some(Ok(10)));
|
|
|
// and iteration resumes normally
|
|
|
assert_eq!(iter.next(), Some(Ok(5)));
|
|
|
|
|
|
// let's drain the iterator to test peek() at the end
|
|
|
while iter.next().is_some() {}
|
|
|
assert_eq!(iter.peek(), None);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_empty() {
|
|
|
let mut iter =
|
|
|
AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap();
|
|
|
assert!(!iter.is_empty());
|
|
|
while iter.next().is_some() {}
|
|
|
assert!(!iter.is_empty());
|
|
|
|
|
|
let iter =
|
|
|
AncestorsIterator::new(SampleGraph, vec![], 0, true).unwrap();
|
|
|
assert!(iter.is_empty());
|
|
|
|
|
|
// case where iter.seen == {NULL_REVISION}
|
|
|
let iter =
|
|
|
AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap();
|
|
|
assert!(iter.is_empty());
|
|
|
}
|
|
|
|
|
|
/// A corrupted Graph, supporting error handling tests
|
|
|
#[derive(Clone, Debug)]
|
|
|
struct Corrupted;
|
|
|
|
|
|
impl Graph for Corrupted {
|
|
|
fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
|
|
|
match rev {
|
|
|
1 => Ok([0, -1]),
|
|
|
r => Err(GraphError::ParentOutOfRange(r)),
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_initrev_out_of_range() {
|
|
|
// inclusive=false looks up initrev's parents right away
|
|
|
match AncestorsIterator::new(SampleGraph, vec![25], 0, false) {
|
|
|
Ok(_) => panic!("Should have been ParentOutOfRange"),
|
|
|
Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25)),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_next_out_of_range() {
|
|
|
// inclusive=false looks up initrev's parents right away
|
|
|
let mut iter =
|
|
|
AncestorsIterator::new(Corrupted, vec![1], 0, false).unwrap();
|
|
|
assert_eq!(iter.next(), Some(Err(GraphError::ParentOutOfRange(0))));
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_lazy_iter_contains() {
|
|
|
let mut lazy =
|
|
|
LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap();
|
|
|
|
|
|
let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
|
|
|
// compare with iterator tests on the same initial revisions
|
|
|
assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
|
|
|
|
|
|
// contains() results are correct, unaffected by the fact that
|
|
|
// we consumed entirely an iterator out of lazy
|
|
|
assert_eq!(lazy.contains(2), Ok(true));
|
|
|
assert_eq!(lazy.contains(9), Ok(false));
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_lazy_contains_iter() {
|
|
|
let mut lazy =
|
|
|
LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0]
|
|
|
|
|
|
assert_eq!(lazy.contains(2), Ok(true));
|
|
|
assert_eq!(lazy.contains(6), Ok(false));
|
|
|
|
|
|
// after consumption of 2 by the inner iterator, results stay
|
|
|
// consistent
|
|
|
assert_eq!(lazy.contains(2), Ok(true));
|
|
|
assert_eq!(lazy.contains(5), Ok(false));
|
|
|
|
|
|
// iter() still gives us a fresh iterator
|
|
|
let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
|
|
|
assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
/// Test constructor, add/get bases and heads
|
|
|
fn test_missing_bases() -> Result<(), GraphError> {
|
|
|
let mut missing_ancestors =
|
|
|
MissingAncestors::new(SampleGraph, [5, 3, 1, 3].iter().cloned());
|
|
|
let mut as_vec: Vec<Revision> =
|
|
|
missing_ancestors.get_bases().iter().cloned().collect();
|
|
|
as_vec.sort();
|
|
|
assert_eq!(as_vec, [1, 3, 5]);
|
|
|
|
|
|
missing_ancestors.add_bases([3, 7, 8].iter().cloned());
|
|
|
as_vec = missing_ancestors.get_bases().iter().cloned().collect();
|
|
|
as_vec.sort();
|
|
|
assert_eq!(as_vec, [1, 3, 5, 7, 8]);
|
|
|
|
|
|
as_vec = missing_ancestors.bases_heads()?.iter().cloned().collect();
|
|
|
as_vec.sort();
|
|
|
assert_eq!(as_vec, [3, 5, 7, 8]);
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
fn assert_missing_remove(
|
|
|
bases: &[Revision],
|
|
|
revs: &[Revision],
|
|
|
expected: &[Revision],
|
|
|
) {
|
|
|
let mut missing_ancestors =
|
|
|
MissingAncestors::new(SampleGraph, bases.iter().cloned());
|
|
|
let mut revset: HashSet<Revision> = revs.iter().cloned().collect();
|
|
|
missing_ancestors
|
|
|
.remove_ancestors_from(&mut revset)
|
|
|
.unwrap();
|
|
|
let mut as_vec: Vec<Revision> = revset.into_iter().collect();
|
|
|
as_vec.sort();
|
|
|
assert_eq!(as_vec.as_slice(), expected);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_missing_remove() {
|
|
|
assert_missing_remove(
|
|
|
&[1, 2, 3, 4, 7],
|
|
|
Vec::from_iter(1..10).as_slice(),
|
|
|
&[5, 6, 8, 9],
|
|
|
);
|
|
|
assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]);
|
|
|
assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]);
|
|
|
}
|
|
|
|
|
|
fn assert_missing_ancestors(
|
|
|
bases: &[Revision],
|
|
|
revs: &[Revision],
|
|
|
expected: &[Revision],
|
|
|
) {
|
|
|
let mut missing_ancestors =
|
|
|
MissingAncestors::new(SampleGraph, bases.iter().cloned());
|
|
|
let missing = missing_ancestors
|
|
|
.missing_ancestors(revs.iter().cloned())
|
|
|
.unwrap();
|
|
|
assert_eq!(missing.as_slice(), expected);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_missing_ancestors() {
|
|
|
// examples taken from test-ancestors.py by having it run
|
|
|
// on the same graph (both naive and fast Python algs)
|
|
|
assert_missing_ancestors(&[10], &[11], &[3, 7, 11]);
|
|
|
assert_missing_ancestors(&[11], &[10], &[5, 10]);
|
|
|
assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]);
|
|
|
}
|
|
|
|
|
|
/// An interesting case found by a random generator similar to
|
|
|
/// the one in test-ancestor.py. An early version of Rust MissingAncestors
|
|
|
/// failed this, yet none of the integration tests of the whole suite
|
|
|
/// catched it.
|
|
|
#[test]
|
|
|
fn test_remove_ancestors_from_case1() {
|
|
|
let graph: VecGraph = vec![
|
|
|
[NULL_REVISION, NULL_REVISION],
|
|
|
[0, NULL_REVISION],
|
|
|
[1, 0],
|
|
|
[2, 1],
|
|
|
[3, NULL_REVISION],
|
|
|
[4, NULL_REVISION],
|
|
|
[5, 1],
|
|
|
[2, NULL_REVISION],
|
|
|
[7, NULL_REVISION],
|
|
|
[8, NULL_REVISION],
|
|
|
[9, NULL_REVISION],
|
|
|
[10, 1],
|
|
|
[3, NULL_REVISION],
|
|
|
[12, NULL_REVISION],
|
|
|
[13, NULL_REVISION],
|
|
|
[14, NULL_REVISION],
|
|
|
[4, NULL_REVISION],
|
|
|
[16, NULL_REVISION],
|
|
|
[17, NULL_REVISION],
|
|
|
[18, NULL_REVISION],
|
|
|
[19, 11],
|
|
|
[20, NULL_REVISION],
|
|
|
[21, NULL_REVISION],
|
|
|
[22, NULL_REVISION],
|
|
|
[23, NULL_REVISION],
|
|
|
[2, NULL_REVISION],
|
|
|
[3, NULL_REVISION],
|
|
|
[26, 24],
|
|
|
[27, NULL_REVISION],
|
|
|
[28, NULL_REVISION],
|
|
|
[12, NULL_REVISION],
|
|
|
[1, NULL_REVISION],
|
|
|
[1, 9],
|
|
|
[32, NULL_REVISION],
|
|
|
[33, NULL_REVISION],
|
|
|
[34, 31],
|
|
|
[35, NULL_REVISION],
|
|
|
[36, 26],
|
|
|
[37, NULL_REVISION],
|
|
|
[38, NULL_REVISION],
|
|
|
[39, NULL_REVISION],
|
|
|
[40, NULL_REVISION],
|
|
|
[41, NULL_REVISION],
|
|
|
[42, 26],
|
|
|
[0, NULL_REVISION],
|
|
|
[44, NULL_REVISION],
|
|
|
[45, 4],
|
|
|
[40, NULL_REVISION],
|
|
|
[47, NULL_REVISION],
|
|
|
[36, 0],
|
|
|
[49, NULL_REVISION],
|
|
|
[NULL_REVISION, NULL_REVISION],
|
|
|
[51, NULL_REVISION],
|
|
|
[52, NULL_REVISION],
|
|
|
[53, NULL_REVISION],
|
|
|
[14, NULL_REVISION],
|
|
|
[55, NULL_REVISION],
|
|
|
[15, NULL_REVISION],
|
|
|
[23, NULL_REVISION],
|
|
|
[58, NULL_REVISION],
|
|
|
[59, NULL_REVISION],
|
|
|
[2, NULL_REVISION],
|
|
|
[61, 59],
|
|
|
[62, NULL_REVISION],
|
|
|
[63, NULL_REVISION],
|
|
|
[NULL_REVISION, NULL_REVISION],
|
|
|
[65, NULL_REVISION],
|
|
|
[66, NULL_REVISION],
|
|
|
[67, NULL_REVISION],
|
|
|
[68, NULL_REVISION],
|
|
|
[37, 28],
|
|
|
[69, 25],
|
|
|
[71, NULL_REVISION],
|
|
|
[72, NULL_REVISION],
|
|
|
[50, 2],
|
|
|
[74, NULL_REVISION],
|
|
|
[12, NULL_REVISION],
|
|
|
[18, NULL_REVISION],
|
|
|
[77, NULL_REVISION],
|
|
|
[78, NULL_REVISION],
|
|
|
[79, NULL_REVISION],
|
|
|
[43, 33],
|
|
|
[81, NULL_REVISION],
|
|
|
[82, NULL_REVISION],
|
|
|
[83, NULL_REVISION],
|
|
|
[84, 45],
|
|
|
[85, NULL_REVISION],
|
|
|
[86, NULL_REVISION],
|
|
|
[NULL_REVISION, NULL_REVISION],
|
|
|
[88, NULL_REVISION],
|
|
|
[NULL_REVISION, NULL_REVISION],
|
|
|
[76, 83],
|
|
|
[44, NULL_REVISION],
|
|
|
[92, NULL_REVISION],
|
|
|
[93, NULL_REVISION],
|
|
|
[9, NULL_REVISION],
|
|
|
[95, 67],
|
|
|
[96, NULL_REVISION],
|
|
|
[97, NULL_REVISION],
|
|
|
[NULL_REVISION, NULL_REVISION],
|
|
|
];
|
|
|
let problem_rev = 28 as Revision;
|
|
|
let problem_base = 70 as Revision;
|
|
|
// making the problem obvious: problem_rev is a parent of problem_base
|
|
|
assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev);
|
|
|
|
|
|
let mut missing_ancestors: MissingAncestors<VecGraph> =
|
|
|
MissingAncestors::new(
|
|
|
graph,
|
|
|
[60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6]
|
|
|
.iter()
|
|
|
.cloned(),
|
|
|
);
|
|
|
assert!(missing_ancestors.bases.contains(&problem_base));
|
|
|
|
|
|
let mut revs: HashSet<Revision> =
|
|
|
[4, 12, 41, 28, 68, 38, 1, 30, 56, 44]
|
|
|
.iter()
|
|
|
.cloned()
|
|
|
.collect();
|
|
|
missing_ancestors.remove_ancestors_from(&mut revs).unwrap();
|
|
|
assert!(!revs.contains(&problem_rev));
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|